「アインシュタインの物理」でリンクする研究・教育拠点研究会 2009年10月23-24日 Non-Equilibrium1D Bose Gases Integrability and Thermalization Toshiya Kinoshita Graduate School of Human and Environmental Studies (Course of Studies on Material Science) Kyoto University and JST PRESTO Work at Penn State University with Trevor Wenger Prof. David S. Weiss Outline 1D Bose gas theory Equilibrium 1D Bose gas experiments - Total energy - 1D Cloud Size - Local Pair Correlations I will describe briefly in this talk. Non-Equilibrium 1D Bose gas experiments - the Quantum Newton’s cradle 「量子性・多体効果が顕著に現れる系を原子気体で創る」 物性研究 = 量子多体系の研究 量子力学特有な現象 多体効果 統計性の違い 弱く相互作用するシステムを 創り、物事を単純化させ、 複雑な現象の背後に潜む 原理を抜き出す 純粋 ユニバーサル 位相空間密度 ldB n 3 ~ 1 ド・ブロイ波長 ~ 粒子間距離 ldB (1/n)1/3 (n : density) ldB n 3 ~1 ド・ブロイ波長 ∝ 1/√T 原子 → クラスター、固体 density 10 13 - 14 /cm3 真の熱平衡状態(固体・液体)への到達時間を長くする ~数分 ≫ 実験の時間スケール 10秒 気体状態が極めて長いLife Time をもつ準安定状態として存在 T < 1 mK ! Laser Cooling & Trapping Evaporative Cooling Ref : 4He 2.17 K ・ ドップラー冷却によるビームの減速 │e > │g > ・ 磁気光学トラップ (Magneto-Optical-Trap : MOT) ・ 偏向勾配冷却 到達温度 : 冷却能力 = 加熱効果 ・ 蒸発冷却 (from 低温物理学) Density 1秒で 数 mK ~数10 mK 高エネルギー原子の 選択的排除 弾性衝突による 熱平衡化 Energy 光双極子力 D Induced Dipole : Dipole in E : 光格子(Optical Lattice) Udip ∝ − I (r ) D 光双極子トラップ D: 87 Rb 780 nm 1064 nm (YAG) 10.4 mm (CO2) Uo Uo : sub mK ~ mK 磁気トラップ 光双極子トラップ rf 磁場 U0 (final stage) < 20 mK ・ 磁気サブレベルによらない ・ バイアス磁場の設定が自由 ・ トラップの変形・スイッチが容易 87 All-Optical BEC of Rb -4 1s Kinoshita, Wenger, Weiss, Phys. Rev. A 71, 011602(R) (2005) -2 -2 0 0 2 2 4 1.5 s Evaporation times 2.0 s 3.5x105 BEC atoms every 3 s 量子縮退した気体=“New Quantum State of Matter” ボーズ・アインシュタイン凝縮 全原子 in the Lowest Energy State T=0K! 位相のそろった 巨大な物質波集団! マクロ(巨視的)な量子現象 「直接」観測 操作・制御 Achieved in 1995 2001 Nobel 賞 Time of Flight 吸収によるShadow Cast 原子集団の”運動量分布” CCD Released Energy = 運動エネルギー + 相互作用エネルギー (Mean-field Energy) The mean-field energy is converted into the Kinetic energy immediately after the release. 破壊測定 In-situ Imaging 原子集団 = Phase Object “位相のシフト” Phase Plate (Phase Contrast) ‘Blocked’ (Dark Ground Imaging) 非破壊測定 Post BEC の1つの流れ How to make strongly correlated system with a dilute gas….. Ekinetic vs ≫ ≪ Einteraction Weakly Interacting Strongly Interacting 重なりによる相互作用 エネルギーの上昇 局在による力学的 エネルギーの上昇 平均場近似 強相関系 1D Bose gases with infinite hard core interactions Lewi Tonks, 1936: Eq. of state of a 1D classical gas of hard spheres Marvin Girardeau, 1960: 1D Bose gases with infinite hard core repulsion In 1D, if no two single particle wavefunctions overlap ψbosons = ψfermions “Fermionization” 1D Bose gases with variable pointlike interactions Elliot Lieb and Werner Liniger, 1963: Exact solutions for 1D Bose gases with arbitrary (z) interactions 2 2 Solutions m g1D parameterized by = 2 H1D = - all atoms + g1Dδ z 2 2m z all n1D >>1 Tonks-Girardeau gas <<1 mean field theory (Thomas-Fermi gas) kinetic energy dominates mean field energy dominates pairs (g1D > 0) large g1D low density small g1D high density 1D Bose atomic gases Maxim Olshanii, 1998: Adaptation to real atoms a 2 a3D 2 a n1D a3D = 3D scattering length a = transverse size of wavefunction when a 3D, n1D or a 1D waveguide Optical Lattices Calculable, versatile atom traps Far from resonance, no light scattering UAC Intensity 1D Bose gases 1D: 2D: 3D: Adiabatic Loading from BEC into 2D Lattice a a = (ħ / mω) 1/2 2次元光格子による動径方向の非常に強い閉じ込め = 1D System + チューブ内の軸方向に沿った緩やかな閉じ込め 2D Lattice Power weakly interacting ⇒ より強い閉じ込め ⇒ more strongly interacting In 1D High density Low density Bundles of 1D Systems detuning 3.2THz w0~ 600 um up to 85Erec Blue-detuned Lattice minimizes spontaneous emission For 1D: negligible tunneling; all energies << ħω Independently adjust longitudinal and transverse trapping Recall: when a or n1D So when the lattice power or the dipole trap power Expansion in the 1D tubes 0 ms 7 ms 17 ms up 50-300 atoms/tube 1000-8000 tubes aspect ratio 150 ~ 700 Family of curves parameterized by Science Kinoshita, Wenger, DSW, 305, 1125 (2004) 2 MF 1.5 1 TG TonksGirardeau gas Exact 1D 0.5 1D quasiBEC 0 0.4 weak coupling 0.7 1 4 strong coupling Normalized Local Pair Correlations By photo-association Theory: Gangardt & Shlyapnikov, PRL 90 010401 (2003) g(2) of the 3D BEC is 1. g 2 Expt: Kinoshita, Wenger, DSW, PRL 95 190406 (2005) 0.8 0.7 Strong coupling regime 0.6 Pauli exclusion for Bosons 0.5 0.4 0.3 0.2 0.1 0 Weak coupling .3 regime 1 eff 3 10 Fermionized Bosons ! g(3), higher order correlation also decreases Summary (1st Half) Experiments with equilibrium 1D Bose gases across coupling regimes: total energy; cloud lengths, momentum distributions, local pair correlations Experiments agree with the exact 1D Bose gas theory, from Thomas-Fermi to Tonks-Girardeau. 1D systems are a test bed for modeling condensed matter using cold atoms. Other tests of 1D Bose gas theory : NIST(Gaithersburg), Zurich, Mainz What happens when a 1D Bose gas is put into a Non-Equilibrium state ? Does it thermalize ? Collisions in 1D For identical particles, reflection looks just like transmission ! Two-body collisions between distinct bosons cannot change their momentum distribution. Approach to a Thermal Equilibrium It will ergodically sample the entire phase space (E = const.) Integrable systems never reach a thermal equilibrium (too many constrains) Does a Real 1D Gas Thermalize? 1D Bose gases with δ-fn interactions are integrable systems they do not: ergodically sample phase space ≈ become chaotic pa, pb, pc ≈ thermalize pa, pb, pc Thermalization in a real 1D Bose gas has been a somewhat open question. Do imperfectly δ-fn interactions lift integrability enough to allow the atoms to thermalize? Do longitudinal potentials matter? Procedure: take the 1D gas out of equilibrium and see how it evolves. 1 standing wave pulse Optical thickness Creating Non-Equlibrium Distributions 2 standing wave pulses Wang, et al., PRL 94, 090405 (2005) Optical thickness Position (μm) Position (μm) Harmonic Trap Motion x A classical Newton’s cradle v We make thousands of parallel quantum Newton’s cradles, each with 50-300 oscillating atoms. 1D Evolution in a Harmonic Trap ms 0 5 10 -500 Kinoshita, Wenger, Weiss Nature 440, 900 (2006) Position (μm) 0 500 40 μm 1st cycle average 15 30 195 ms 390 ms Dephased Momentum 1 cycle average Distributions 15 distribution st 40 distribution (30 in A) Optical thickness (normalized) =18 =3.2 = 1.4 Position (μm) Project the evolution Negligible Thermalization Optical thickness (normalized) Optical Thickness Projected curves and actual curves at 30 or 40 A B After dephasing, =18 the 1D gases th reach a steady >390 state that is not thermal equilibrium =3.2 >1910 C = 1.4 >200 Spatial Distribution (mm) Position (μm) Each atom continues to oscillate with its original amplitude What happens in 3D? Thermalization occurs in ~3 collisions. 0 2 4 9 Lack of Thermalization A 初期に与えられた、平衡から大きく 離れた運動量分布を再分布させる 機構が存在しない。 Optical Thickness B 軸方向の弱いトラップポテンシャルは可積分性を崩す ものの、熱平衡を引き起こすほどには十分でない。 C This many-body 1D system is nearly integrable. Spatial Distribution (mm) A New Type of Experiment : Direct Control of Non-Integrability Is there a non-integrability threshold for thermalization? The classical KAM theorem shows that if a non-integrable system is sufficiently close to integrable, it will not ergodically sample phase space. Is there a quantum mechanical analog? Procedure: controllably lift integrability and measure thermalization. Ways to lift integrability Allow tunneling among tubes (1D 2D and 3D behavior); Finite range 1D interactions; Add axial potentials Making 1D gases thermalize Jx Top view JY Allow tunneling among tubes 1D 2D and 3D behavior Optical thickness e. g. Ux = UY = 21 Erec Ux=UY =60 Erec =3.2 1st cycle average 15 40 1st 15 40 z (mm) z (mm) z (mm) Thermalization in a 2D array of tubes Lattice Depth (Erec) 20 30 40 50 0.02 1 0.8 0.015 0.6 0.01 0.4 0.005 0.2 0 equipartition 0 2 4 6 8 10 Lattice Depth (uK) 12 Fraction of energy in 1D Thermalization Rate (per collision) 10 no tails 2-body collisions are well below threshold for transverse excitation. Summary Experiments with equilibrium 1D Bose gases across coupling regimes: total energy, cloud lengths, momentum distributions, local pair correlations agree with the exact 1D Bose gas theory. Non-equilibrium 1D Bose gases: quantum Newton’s cradle. Independent δ-int. 1D Bose gases do not thermalize! Relaxed conditions allow 1D Bose gases do thermalize. We have a theory to test. We can also lift integrability in other ways. Is there universal behavior? Stories After our Experiments…… Do Integral Systems Relax ? Approach to a Thermal Equilibrium It will ergodically sample the entire phase space (E = const.) Integrals of Motions (conserved quantities) other than the energy strongly restrict the sampling regions. Integrable systems never reach a thermal equilibrium (too many constrains) However, they may relax to a steady state (not a thermal equilibrium, but something else) Maximizing Entropy Rigol, Dunjko, Yurovsky and Olshanii, PRL, 98, 050405 (2007) Grand Canonical Distribution For Integrable system Maximize entropy S, subject to the constrains imposed by a full set of conserved quantities. Generalized Gibbs ensemble with many Lagrange multipliers. In 1D system, Discrete Momentum Sets are created by Periodic Potentials. Remove Potentials (Integrable system) Follow Time Evolution Relax to a steady state, but not a thermal equilibrium. “Memory” of initial states is left. Rigol, Dunjko, Yurovsky and Olshanii, PRL, 98, 050405 (2007) Control Non-Equilibrium process Understanding of Non-Equilibrium Dynamics is very important for Condensed Matter Physics and Statistical Physics Integrable System + Perturbation to control dynamics 1D Bosons (ongoing project) 1D Fermions Non-Integrable system, but some constrains what a kind of constrains, magnitude how to lift integrability quenched by suddenly changing parameters Cold Atom Experiments provide nice stages to study non-equilibrium dynamics. 1D System 1) 熱平衡に近づかない系 + Ongoing project “擾乱” フェルミ=パスタ=ウーラムの実験 KAM理論 量子多体系で実験&観測 2) Attractively Interacting 1D System 3) Atomic Flow in 1D Geometry (ongoing project) 初期宇宙 ブラックホール Quantized Flux of Atoms Quantum Gases Flowing in 2D Anti-Dot Lattices…… (some of them are ongoing projects) Quantum Chaos (Billiard of Quantum Gas) Quantum Turbulence Non-Equilibrium Phenomena Creation of Macroscopic Coherence Current Status of my Lab.,,,,,
© Copyright 2024 ExpyDoc