Sb-NQR probe for superconducting properties in the

Superconducting properties in
filled-skutterudite
PrOs4Sb12
Kitaoka Lab.
M1 Takayuki Nagai
references
・H.Kotegawa et al,Phys.Rev.Lett. 90,027001 (2003)
・M.Yogi et al,Phys.Rev. B 67,180501(R) (2003)
Filled-skutterudite : 充填スクッテルダイト
Abstract
abstract
・Filled-skutterudite compounds show rich properties
metal-insulator transition,
heavy fermion behavior,and
superconductivity etc.
(LaOs4Sb12,PrOs4Sb12, PrRu4Sb12 etc.)
・PrOs4Sb12 shows heavy-fermion-like behavior and
anomalous superconductivity in many experiments.
・The related compounds,
LaOs4Sb12 ,LaRu4Sb12 and PrRu4Sb12 have been reported as
conventional BCS superconductors.
Metal-insulator transition : 金属-絶縁体転移
Heavy-fermion (HF) compound : 重い電子系化合物
Outline
Outline
• Introduction
- Filled-skutterudite structure
- Crystal electric field
- Nuclear Quadrupole Resonance technique
• Experiments
• Summary
Introduction : Filled-skutterudite / Crystal structure
Crystal structure
Thermoelectric effect
Higher
temperature
Lower
temperature
Application
・refrigerator
・waste heat recovery etc.
Filled-skutterudite compounds show rich properties.
rare earth
・metal-insulator transition
transition metal
・heavy-fermion (HF) behavior
pnictogen
・superconducting (SC) transition
The cage made by a rare earth atom and 12
pnictogen atoms forms bcc-type crystal lattice
Thermoelectric effect
: 熱電効果
IntroductionIntroduction
: Crystal electric
field
: Crystal
electric field
PrOs4Sb12
L-S coupling
Crystal electric
field effect
J=6 (13)
(111K , doublet)
Pr3+-4f2
J=5 (11)
(65K , triplet)
J=4 (9)
(6K , triplet)
magnetic
(0K , singlet)
non-magnetic
Very small split
Crystal electric field : 結晶場
Interaction between
electrons and ions.
L-S coupling : スピン-軌道相互作用
  L  S
L : orbital angular momentum
S : spin angular momentum
→ Magnetic fluctuations
T.Hotta et al,Phys. Rev.Letter. 94 (2005) 067003
Magnetic fluctuation : 磁気揺らぎ
Introduction
: Filled-skutterudite
compounds
/ PrOs4Sb12
Introduction
: Filled-skutterudite
compounds
PrOs4Sb12
・zero resistivity
・Meissner effect
・Jump of specific heat
・ First Pr-based heavy-fermion superconductor
PrOs4Sb12
E.D.Bauer et al,Phys. Rev. B 65 (2002) 100506
PrRu4Sb12
?
BCS
TC=1.85K
TC=1.3K
LaOs4Sb12
LaRu4Sb12
BCS
BCS
TC=0.74K
TC=3.58K
Introduction
: Nuclear
Quadrupole
Resonance
Introduction
: Nuclear
Quadrupole
Resonance
Q 
Q
6
e+
 3I
2
Z
I
2

I
1 3 5
I  , , ...
2 2 2
3
2
m
3
2
m
1
2
Q  0
Q  0
Charge distribution is
not spherical symmetry.
Sb-NQR spectrum of PrOs4Sb12
・123Sb (I=7/2)
・121Sb (I=5/2)
7 2
5 2
3νQ
2νQ
5 2
νQ
3 2
1 2
Intensity(arb.unit)
1.0
0.8
123
121
0.6
0.4
Sb
Sb
121Sb (123Sb)
has 2
(3) NQR transitions.
0.2
2νQ
3 2
νQ
1 2
50
60
70
80
Frequency(MHz)
Nuclear Quadrupole Resonance : 核四重極共鳴
Experiments : Nuclear spin-lattice relaxation
m
 H
  AI  S
3
2
  AI  S
m
T1
 1 e

1
2
t
T1
Nuclear spin-lattice
relaxation
核スピン-格子緩和
Experiments : Nuclear spin-lattice relaxation
BCS superconductor : LaOs4Sb12
Normal state
1
   N ( E ) N ( E ) f ( E )(1  f ( E ))dEdE 
T1
 N 2 ( EF )T
TT
 const
1
La
Experiments : Nuclear spin-lattice relaxation
BCS superconductor : LaOs4Sb12
SC state
100
TC
TT
1  const
-1
1/T1 (sec )
10
1
Coherence peak
0.1
e


k BT
0.01
2
NMR can detect low energy excitation
around the Fermi surface.
LaOs4Sb12
0.001
0.1
1
H.Kotegawa et al (2003)
10
Temperature (K)
100
Experiments
:Gapof
structure
of anisotropic
Experiments:
Gap structure
anisotropic
superconductors
rsuperconductor
Observed in HF superconductors.
Line-node
Gap equation
( )   0 cos
1/T1∝T3
Point-node
Gap equation
TC
T3
( )   0 sin 
1/T1∝T5
G.-q.Zheng et al,PRL 86 4664(2001)
Anisotropic superconductor : 異方的超伝導体
Experiments : Spin-lattice-relaxation time T1
4 f

0
LaOs4Sb12 vs.  4 f 
2
PrOs4Sb12
TC
100
TC
LaOs4Sb12
10
-1
1/T1 (sec )
・Normal State
→T1T : const.
LaOs4Sb12
1
・SC State
→ Coherence peak at TC
0.1
and Exponential T dependence of 1/T1
PrOs4Sb12
Conventional BCS superconductor.
0.01
PrOs4Sb12
LaOs4Sb12
0.001
0.1
1
H.Kotegawa et al (2003)
H.Kotegawa et al (2003)
10
Temperature (K)
100
Experiments : Spin-lattice-relaxation time T1-2
1
CeCu2Si2 , CeIrIn5 vs.  4 f  PrOs4Sb12
2
CeIrIn5
CeCu2Si2
100
TC
T3
10
TC
-1
TC
PrOs4Sb12
1/T1 (sec )
4 f 
T3
T3
1
0.1
T5
0.01
PrOs4Sb12
0.001
0.1
Y.Kawasaki et al,PRB 66 (2002) 224502
G.-q.Zheng et al,PRL 86 4664(2001)
1
H.Kotegawa et al (2003)
10
100
Temperature (K)
CeCu2Si2 , CeIrIn5
・SC state
1/T1 is proportional to T3
→ anisotropic HF superconductor
Isotropic HF
superconductor?
Experiments : Spin-lattice-relaxation time T1-3
TC
2
4
f
  PrRu4Sb12
100
4 f 
PrOs4Sb12
PrOs4Sb12
-1
1/T1 (sec )
10
vs.
2
1
0.1
0.01
PrOs4Sb12
0.001
0.1
1
H.Kotegawa et al (2003)
10
100
M.Yogi et al, PRL 90 027001 (2003)
Temperature (K)
T<<70K
H. Kotegawa et al, PRL 90 027001 (2003)
T<<6K
T>>6K
magnetic
TC=1.85K
magnetic
6K
non-magnetic
: Electrons
70K
TC=1.3K
non-magnetic
T>>70K
Results
TC
100
Crystal electric field plays
an important role.
-1
1/T1 (sec )
10
1
0.1
0.01
PrOs4Sb12
H.Kotegawa et al (2003)
PrOs
4Sb1210isn’t a
1
conventional
BCS
Temperature (K)
superconductor.
0.001
0.1
100
100
TC
PrRu4Sb12
Isotropic-HF
super conductor
BCS
TC=1.85K
TC=1.3K
-1
1/T1 (sec )
10
PrOs4Sb12
1
0.1
0.01
LaOs4Sb12
0.001
0.1
1
LaOs4Sb12
LaRu4Sb12
BCS
BCS
TC=0.74K
TC=3.58K
H.Kotegawa et al (2003)
10
Temperature (K)
100
Summary
Summary
• From temperature dependence of
nuclear-spin-relaxation time T1,
PrOs4Sb12 is not conventional BCS superconductor
but HF-like-isotropic superconductor.
• Crystal electric field plays an important role in the
superconductivity of PrOs4Sb12 .