NMR study of Multi-layer Cuprate superconductor

NMR Study on
Copper-Oxide Superconductor
Kitaoka Lab.
Nozomu Shiki
T. Goto et al., J. Phys. Soc. Jpn. 65(11), 3666-3671, 1996-11-15
T. Tsuda et al.,J. Phys. Soc. Jpn. 61, pp. 2109-2113 (1992)
Contents
• Introduction
Copper-Oxide superconductor(LSCO)
• Results
NMR, NQR(Zero-field-NMR) technic
NMR, Zero-field-NMR results on TlBa2YCu2O7-δ
• Summary
Introduction
High-Tc Superconductor
Charge
Reservoir
CuO2
plane
Charge
Reservoir
Cu2+ (3d9)
La2CuO4
Mott Insulator
Introduction
High-Tc Superconductor
Charge
Reservoir
CuO2
plane
La2CuO4
Mott Insulator
Charge
Reservoir
Crystal field
O2x2-y2
Cu2+ (3d9)
3z2-r2
xy
O2-
Cu2+
O2O2-
yz
zx
O2-
cubic symmetry
O2-
Introduction
High-Tc Superconductor
Charge
Reservoir
La2CuO4
CuO2
plane
Mott Insulator
Charge
Reservoir
Jahn-Teller effect
Crystal field
Cu2+ (3d9)
x2-y2
x2-y2
3z2-r2
3z2-r2
O2-
xy
xy
yz
yz
zx
zx
O2-
Cu2+
O2O2-
O2-
O2-
Introduction
High-Tc Superconductor
Charge
Reservoir
La2CuO4
CuO2
plane
Mott Insulator
Charge
Reservoir
Jahn-Teller effect
Crystal field
Cu2+ (3d9)
U: coulomb energy
t : hopping energy
x2-y2
x2-y2
3z2-r2
3z2-r2
xy
xy
yz
yz
zx
zx
Antiferromagnetic
interaction J
t
𝒕𝟐
𝑱∝
𝑼
Introduction
High-Tc Superconductor
Charge
Reservoir
La2CuO4
CuO2
plane
Mott Insulator
Charge
Reservoir
Jahn-Teller effect
Crystal field
Cu2+ (3d9)
U: coulomb energy
t : hopping energy
x2-y2
x2-y2
3z2-r2
3z2-r2
xy
xy
yz
yz
zx
zx
𝒕𝟐
𝑱∝
𝑼
Antiferromagnetic
interaction J
U
t
Introduction
High-Tc Superconductor
Charge
Reservoir
La2CuO4
CuO2
plane
Mott Insulator
Charge
Reservoir
Jahn-Teller effect
Crystal field
Cu2+ (3d9)
U: coulomb energy
t : hopping energy
x2-y2
x2-y2
3z2-r2
3z2-r2
xy
xy
yz
yz
zx
zx
𝒕𝟐
𝑱∝
𝑼
Antiferromagnetic
interaction J
U
t
Introduction
High-Tc Superconductor
Charge
Reservoir
La2-xSrxCuO4
CuO2
plane
Sr2+
Charge
Reservoir
Cu2+ (3d8)
substitution
La3+
x2-y2
x2-y2
3z2-r2
3z2-r2
xy
xy
yz
yz
zx
zx
Sr2+
Introduction
Phase diagram
Hole doping type
(T-structure)
Nd2-xCexCuO4
T
La2-xSrxCuO4
Nd3+ → Ce4+
La3+ → Sr2+
Electron doping
Hole doping
Cu
Cu
O
La (Sr)
AFM
La,
Sr
SC
SC
0.15
0
0.15
A mother compound is a Mott insulator.
La2-xSrxCuO4
La3+
Sr2+
As carriers increase , the ground state
changes from AFM to SC.
x
Introduction
Phase diagram
Hole doping type
(T-structure)
Nd2-xCexCuO4
T
La2-xSrxCuO4
Nd3+ → Ce4+
La3+ → Sr2+
Electron doping
Hole doping
Cu
Cu
O
La (Sr)
AFM
La,
Sr
SC
SC
0.15
0
0.15
A mother compound is a Mott insulator.
La2-xSrxCuO4
La3+
Sr2+
As carriers increase , the ground state
changes from AFM to SC.
x
Sample
TlBa2YCu2O7-δ
Tl1212
Tl
Carrier density is controlled
by changing oxygen deficiency.
O
Ba
Cu
・Ca→Y ; atomic radius :
Ca=197pm , Y=180pm (pm=10-12m)
Y
・CuO2 planes in Tl1212 are pyramid type.
・Mott insulator (TN=320K)
Experiment
We performed NMR measurement of Tl1212.
Experiment
Nuclear Magnetic Resonance
H1 cos t
Ex. I=1/2
𝐻0
m=-1/2
I=1/2
ΔH
ω= g H0
gℏ H0
H0
m=+1/2
H0=0
I
H0≠0
Zeemann splitting
Zeeman interaction
ℋ0 = −𝝁 ∙ 𝑯0
= −𝛾ℏ𝑰 ∙ 𝑯0
NMR Intensity
e
ΔH
Em = −γℏ𝐻0𝑚
H res  ω/γ ⊿H
NMR (Nuclear Magnetic Resonance) 核磁気共鳴
γ (gyromagnetic ratio) 磁気回転比
H 0 ω/γ
H
Experiment
Nuclear Magnetic Resonance
ΔH
Ex. I=1/2
𝐻0
m=-1/2
I=1/2
ω= g H0
gℏ H0
H0
m=+1/2
H0=0
H0≠0
Zeemann splitting
e
NMR Intensity
Antiferromagnetic state
H0
Hint
Hint
H res  ω/γ H
H
I
Experiment
Nuclear Magnetic Resonance
ΔH
Ex. I=1/2
𝐻0
m=-1/2
I=1/2
ω= g H0
gℏ H0
H0
m=+1/2
H0=0
I
H0≠0
Zeemann splitting
e
Antiferromagnetic state
NMR Intensity
Polycrystalline
H0
Internal field
H res  ω/γ H
H
Experiment
Nuclear Quadrupole Resonance ( H0 = 0 )
Cu nuclear spin ( I=3/2 )
+
m=±3/2
+
hνQ

e 2 qQ
2
ΗQ 
3I z  I 2
4 I (2 I  1)
f
+

νQ
m=±1/2
+
Different Electric field gradient
OP
IP
IP
Cu
νQ(Cu : OP)~16 MHz
Cu
νQ(Cu : IP) ~ 8 MHz
IP
8 MHz
OP
f
16 MHz
NQR (Nuclear Quadrupole Resonance) 核四重極共鳴 、eQ (the nuclear quadrupole moment) 、 eq (the electric field gradient)
Experiment
NQR , Zero-field-NMR
Different Electric field gradient
OP
IP
IP
Cu
νQ(Cu : OP)~16 MHz
Cu
νQ(Cu : IP) ~ 8 MHz
IP
8 MHz
OP
16 MHz
IP
NQR (Nuclear Quadrupole Resonance) 核四重極共鳴 、eQ (the nuclear quadrupole moment) 、 eq (the electric field gradient)
f
Experiment
NQR , Zero-field-NMR
Different Electric field gradient
OP
IP
Cu
νQ(Cu : OP)~16 MHz
Cu
νQ(Cu : IP) ~ 8 MHz
IP
8 MHz
IP
OP
16 MHz
Shift!!
When Hint occurs ,
IP signal shifts to high frequency.
IP
H  g N I  H int
e 2 qQ

(3I Z2  I ( I  1))
4 I (2 I  1)
Zeeman interaction
Hint can be determined
by frequency shift.
Nuclear quadrupole interaction
NQR (Nuclear Quadrupole Resonance) 核四重極共鳴 、eQ (the nuclear quadrupole moment) 、 eq (the electric field gradient)
f
Experiment
NQR , Zero-field-NMR
e2 qQ
H  g N I  H int 
(3I Z2  I ( I  1))
4I (2I  1)
I=3/2
Zeeman interaction
Hz only
Nuclear quadrupole interaction
HQ << Hz
m
3
2
Δ
m
1
2
-Δ
1
2
-Δ
3
m
2
Δ
m
f
0  g n H
Effect of Hint is big
Because of νQ~10MHz,
Zeeman interaction is
dominant when Hint is
bigger than 1T.
f
0  2
0 0  2
Results
Tl1212 Cu-zero-field-NMR spectra
Tl
O
Ba
The signals of
63Cu and 65Cu
are overlapped.
Cu
Y
H  g N I  H int
e 2 qQ

(3I Z2  I ( I  1))
4 I (2 I  1)
Zeeman interaction
Nuclear quadrupole interaction
0  2
Cu signal is resonant with higher frequency
than νQ by the big internal field.
f
0 0  2
Results
Comparison of spectra
YBa2Cu3O6
La2CuO4
TlBa2YCu2O7-δ
O
O
Tl
O
Ba
Ba
Cu
La
Y
・CuO2 plane in Tl1212 is more ununiform
than La2CuO4 and YBa2Cu3O6 .
Cu
Y
Cu
Determination of the values of MAFM
Results
Hint = | A – 4B | MAFM
Cu
AM
O
Onsite hyperfine field
A ~ 3.7 T/μB
4BM
The supertransferred
hyperfine field
B ≈ various value T/μB
Results
Experimental Results
O
Cu
O
O
Tl
O
Ba
Ba
Cu
AM
Y
Y
La
Cu
4BM
TlBa2YCu2O7-δ
YBa2Cu3O6
La2CuO4
20.44(±1.3)
22.87
31.9
Hint(T)
8.62
7.665
7.878
MAFM(μB)(theoretical value)
0.6
0.6
0.6
|A-4B|(T/μB)
14.3(±0.9)
12.78
13.13
B(T/μB)
2.66(±0.2)
2.27
2.36
63ν
Q(MHz)
Hint = | A – 4B | MAFM
Cu
Results
Multi-layer cuprate superconductor
S. Shimizu et al., Phys. Rev. B 85, 024528 (2012)
Hidekazu Mukuda et al., J. Phys. Soc. Jpn. 81 (2012) 011008
Character of
multi-layer cuprate
OP : Outer Plane
IP : Inner Plane
 Flatness of each layer is good!!
CRL
Carrier concentration; p
 Two types of CuO2 layer;OP and IP
OP
 Carrier concentration varies in each layer.
 IP;low doping
IP
IP
NMR
IP
n=2
OP
CRL
Madelung potential
for hole doping
n=5
OP
IP
Results
(non-doped)
25MHz
ZF-NMR Intensity
Comparison of Cu-zero-field spectra
TlBa2Ca4Cu5O12+δ
(optimally-doped)1.5K
15MHz
10
O
Cu
Y
Ba
IP1
Ca
Cu
OP
O
20
30
TlBa2Ca5Cu6O14+δ (optimally-doped)
Tl
Ba
Tl
1.8K
Tl
Ba
OP
10MHz
15MHz
Ca
Cu
O
IP1
IP2
Results
Comparison of Results
Tl
O
Cu
O
Tl
Ba
Ba
Cu
AM
Ca
Cu
Y
O
4BM
TlBa2YCu2O7-δ
TlBa2Ca4Cu5O12+δ
TlBa2Ca5Cu6O14+δ
20.44(±1.3)
16.05(OP) , 8.37(IP)
16.6(OP) , 9.7(IP)
Hint(T)
8.62
2.5(IP1)
2.1(IP1) , 3.6(IP2)
MAFM(μB)
0.6(theoretical value) 0.1(IP1)
|A-4B|(T/μB)
14.3(±0.9)
20.7(IP1)
21(IP1) , 21.17(IP)
B(T/μB)
2.66(±0.2)
4.25(IP1)
4.33(IP1) , 4.37(IP2)
63ν
Q(MHz)
Hint = | A – 4B | MAFM
0.1(IP1) , 0.17(IP2)
Results
Comparison of Results
Cu
Wave functions of Cu 3d and O 2p
are overlapped largely.
So, Cu-O bonding in multi-layer
is stronger.
O
AM
Cu
O
4BM
Flatness is good in multi-layer.
TlBa2YCu2O7-δ
TlBa2Ca4Cu5O12+δ
TlBa2Ca5Cu6O14+δ
20.44(±1.3)
16.05(OP) , 8.37(IP)
16.6(OP) , 9.7(IP)
Hint(T)
8.62
2.5(IP1)
2.1(IP1) , 3.6(IP2)
MAFM(μB)
0.6(theoretical value) 0.1(IP1)
|A-4B|(T/μB)
14.3(±0.9)
20.7(IP1)
21(IP1) , 21.17(IP)
B(T/μB)
2.66(±0.2)
4.25(IP1)
4.33(IP1) , 4.37(IP2)
63ν
Q(MHz)
Hint = | A – 4B | MAFM
0.1(IP1) , 0.17(IP2)
Results
Tl-NMR spectra
TlBa2YCu2O7-δ
O
Tl
Ba
Cu
Y
Magnetic moment at Cu site induces
the internal field at Tl site.
Tl
O
Cu
Tl-NMR spectra
TlBa2Ca5Cu6O14+δ
Tl
50K
Ba
100K
Ca
Cu
0.3
150K
FWHM(kOe)
Cu
H0⊥c
4.2K
Tl
Ba
Y
Tl1256
Echo Amplitude
TlBa2YCu2O7-δ
O
174.2MHz
200K
0.2
0.1
300K
205
7.00
O
203
Tl
7.05
7.10
Tl
0
7.15
100
7.20
Magnetic Field(T)
・Electronic state around Tl site is homogeneous.
・AFM order develops below TN.
200
Temperature(K)
300
7.25
Summary
・We investigated AFM in Tl1212 by Cu-zero-field-NMR.
The AFM order of Mott insulating state is a common
feature for CuO2 planes.
Hint = | A – 4B | MAFM
・The transferred hyperfine field (B) is large
in multi-layer,
due to the strong covalency of Cu-O bonding
and good flatness of CuO2 planes
・Internal field at Tl site is observed by Tl-NMR
in Tl1212.
because of magnetic order at CuO2 planes
Cu
O
ゼロ磁場中での測定 NQR , zero-field-NMR
ゼロ磁場中における核スピンのハミルトニアン
e2 qQ
H  g N I  H int 
(3I Z2  I ( I  1))
4I (2I  1)
ゼーマン相互作用
核四重極相互作用
i) 常磁性(内部磁場なし)の場合
四重極相互作用によるNQRスペクトルが得られる
ii) 反強磁性秩序状態の場合
内部磁場(と四重極相互作用)によるゼロ磁場NMRスペクトルが得られる
ゼロ磁場中でのスペクトルの解析により
磁性・非磁性状態を確認することができる
ゼロ磁場中での測定 NQR , zero-field-NMR
e2 qQ
H  g N I  H int 
(3I Z2  I ( I  1))
4I (2I  1)
ゼーマン相互作用
HQ only

3
2
核四重極相互作用
Hz << HQ

h Q
1

2
微小な内部磁場
3
2
1

2
3g NH 0 cos  0
g N H 0 [cos2   ( I  12 ) 2 sin 2  ]
1
2
HQ //c
f
3e 2 qQ
Q 
2 I (2 I  1)h
f
Q
  90
Experiment
Knight Shift
H0
I
e
ω= g (Hres+⊿H)
= g Hres(1+K)
NMR (Nuclear Magnetic Resonance) 核磁気共鳴
NMR Intensity
ΔH
ΔH
H res ω/γ ⊿H
H 0 ω/γ
Knight shift
K
γ (gyromagnetic ratio) 磁気回転比
ΔH
H res
H