Introduction - Fujimori Group

Fujimori Kiban-A Workshop 2005
Observation of magnetic domains in LSMO thin films
by XMCD-PEEM
M. OshimaA,
T. TaniuchiA, H. KumigashiraA, H. YokoyaB, T. WakitaC, H.
AkinagaD, M. LippmaaE, M. KawasakiF, H. KoinumaG
and K. OnoH
The Univ. of TokyoA, Okayama Univ.B, JASRIC, AISTD, ISSPE,
Tohoku Univ.F, NIMSG, KEK-PFH
Contents
1.Introduction
2.Objectives
3.Results and discussion
PEEM observation of LSMO thin films
4.Summary
5. Research plans in the near future
1. Introduction
Photoelectron Emission Microscopy
PhotoElectron Emission Microscopy; PEEM
Phosphor
EF
3d
hn
2p
e-
hn
Features of SR-PEEM
eSpecimen
・Element selective contrast
・Real-space mapping of magnetization
PEEM by Oshima Group・Direct observation of antiferromagnetic
domain (linear polarized light)
・Micro-spectroscopy (μ-XAS, μ-EXAFS)
・Time resolved imaging
Features
Spatial resolution: ~50 nm
Projection imaging
T. Taniuchi et al., JESRP114-117, 741 (2005)
X-ray Magnetic Circular Dichroism (XMCD)
(Right)
hn
R
s+
(Left)
L
hn
s-
Magnetic Imaging by XMCD-PEEM
SR
K. Ono et al.,
Background of LSMO magnetic domains
La0.7Sr0.3MnO3 films
LaAlO3
NdGaO3
SrTiO3
substrate substrate substrate
Magnetic anisotropy of LSMO film
strongly depends on substrate.
*J. Dho et al., Appl. Phys. Lett. 82, 1434 (2003).
La1-xSrxMnO3 / SrTiO3
→ In-plane magnetic anisotropy
perpendicular
In plane
MFM images(4 mm × 4 mm)
Furthermore…
・Crystal asymmetry at the surface
In the case that substrate has a step ・Change in symmetry due to step structure
and terrace structure.
・Commensurate lattice constant at interface
・ Lower coordination than bulk
2. Objectives of this study
La1-xSrxMnO3 films
Laser MBE method
RHEED
Monitoring
Moving Edge
Ceramic Targets
Magnetic imaging
SR-PEEM
(PhotoElectron Emission
Microscopy; PEEM)
Mask Pattern
Pulsed Laser
Deposition
Strained
La0.8Sr0.2MnO3 (x = 0.2) / SrTiO3
La0.6Sr0.4MnO3 (x = 0.4) / SrTiO3
Magnetic-structure observation
3. Experimental: Preparation of La1-xSrxMnO3 films
La1-xSrxMnO3 films
La0.6Sr0.4MnO3 (x = 0.4)
Laser MBE method
Target
Substrate
La1-xSrxMnO3 sintered
(x = 0.2 & 0.4)
Nb(0.05%)-SrTiO3(100)
(TiO2-terminated)
Terrace width: ~200 nm
TC ~ 350 K
La0.8Sr0.2MnO3 (x = 0.2)
Condition Annealed at 1050 ℃
@PO2 1.0×10-4 Torr
thickness
100 ML (40 nm)
Character
[in situ]
-ization
RHEED, LEED
[ex situ]
AFM, XRD, ρ-T, SQUID
300 nm
TC ~ 280 K
K. Horiba et al., PRB 71, 155420 (2005).
3. Experimental: PEEM system
Magnetic imaging
XMCD-PEEM
90 cm
120 cm
PEEM system:
PEEMSPECTOR (Elmitec)
T. Taniuchi et al., JESRP114-117, 741 (2005)
PEEM system
・Spatial resolution: ~35 nm (Hg lamp)
・Manipulation
x y z translation, x y tilting and azimuthal rotaion
・Vibration damping
Air damper and pumping by ion pump
・Temperature –120 ~ 400 ℃
Measurement:
SPring8 BL25SU
KEK PF-AR BL-NE1B
・Photon energy
Mn L absorption edges
SR
(620~680 eV)
・resolution
30°
E/ΔE>1000
PEEM
Geometry
4. Results and discussion:
1) PEEM images of LSMO(x = 0.4) film
XMCD-PEEM
in La0.6Sr0.4MnO3 (x = 0.4)
Magnetic image
(difference of acquired images)
SR
Photon energy: Mn L3edge (642 eV)
SR
Temperature: R.T. (~295 K)
SR
Sample
500
500nm
nm
20 mm
S. Imada et al.
Physica B 281&282, 498 (2000).
PEEM image of stripe domains
PEEM images of LSMO(x = 0.4) film
θ= 0°
Sample
θ= 45°
θ= 90°
SR
SR
SR
2) PEEM images of LSMO(x = 0.2) film
Lower than TC
θ= 0°
Higher than TC
Sample
SR
θ= 90°
SR
(TC = 280 K)
PEEM images of LSMO(x = 0.4) film
θ= 0°
Sample
θ= 45°
θ= 90°
SR
SR
SR
La0.67Sr0.33MnO3 film
θ
H
*Z. H. Wang et al., Appl. Phys. Lett. 82, 3731 (2003).
Discussion:
Origin of uniaxial magnetic anisotropy
Uniaxial anisotropy of La1-xSrxMnO3 on SrTiO3
Magnetic anisotropy energy
π
π
K eff  t  K u  t  sin 2  + K1eff  t  cos 2 ( +  ) cos 2 ( -  ) + KS
4
4
Uniaxial
magnetic
anisotropy
Interfacial
Biaxial
magnetic
magnetic
anisotropy
anisotropy
Keff : Effective anisotropy constant per unit volume
t:
Film thickness
La0.67Sr0.33MnO3 film
・Crystal asymmetry at the interface
・Change in symmetry due to step structure
・Commensurate lattice constant at the interface
Ku: 7.29x104 erg/cm3、Keff1: 3.94x104 erg/cm3
*Z. H. Wang et al., Appl. Phys. Lett. 82, 3731 (2003).
Uniaxial anisotropy in LSMO films
w
Ka
h
Kc
t
Kb
a
4π at
4π (at + a2h/w)
4π a2
Ka = a2 + at + (at + a2h/w) Kb = a2 + at + (at + a2h/w) Kc = a2 + at + (at + a2h/w)
a = 5 mm, t = 40 nm, h = 0.39 nm & w = 100 nm
→ Kc ~ 4π
Ka : Kb : Kc ~ 1 : 500 : 1,200,000
Possibility of step-induced magnetic anisotropy
→ Comparison with metal films, SQUID measurements
Uniaxial anisotropy in LSMO films
Previous works: easy axes in plane
biaxial magnetic anisotropy → easy axes[100], [010]
[001]
[0-10]
Uniaxial magnetic anisotropy in our study
→ Related with steps?
[100]
4.Summary
Growth of LSMO/STO stepped substrates
=>Electrical and magnetic properties
identical to bulk crystals
Observation of magnetic domains in LSMO/STO ・
1. LSMO (x=0.4): Magnetic domain structures along the
substrate steps with several microns
2. LSMO (x=0.2): Magnetic domains observed at low
temperature disappeared at RT.
→ New possibility of controlling magnetic domain
structures by means of step structures