1 Charged Rotating Kaluza-Klein Black Holes in Dilaton Gravity Ken Matsuno ( Osaka City University ) collaboration with Masoud Allahverdizadeh ( Universitat Oldenburg ) 2 Introduction 3 • 我々は 4次元時空 に住んでいる 空間 3次元 時間 1次元 • 量子論と矛盾なく , 4種類の力を統一的に議論する 弦理論 超重力理論 高次元時空 上の理論 • 余剰次元 の効果が顕著 高エネルギー現象 強重力場 高次元ブラックホール ( BH ) に注目 4 次元低下 高次元時空 ⇒ 有効的に 4次元時空 a. Kaluza-Klein model “ とても小さく丸められていて見えない ” (針金) 余剰次元方向 b. Brane world model “行くことが出来ないため見えない” 余剰次元方向 4次元 5 “ Hybrid ” Brane world model Bulk Brane Brane Brane ( 4次元時空 ) : 物質 と 重力以外の力 が束縛 Bulk ( 高次元時空 ) : 重力のみ伝播 重力の逆2乗則から制限 ⇒ ( 余剰次元 ) ≦ 0.1 mm 加速器内で ミニ・ブラックホール 生成 ? ( 高次元時空の実験的検証 ) 6 Large Scale Extra Dimension in Brane world model D次元時空 ( D ≧ 4 ) ( 余剰次元サイズ L ) : D次元重力定数 : D次元プランクエネルギー When EP,D ≒ TeV , D = 6 7 ミニ・ブラックホールの形成条件 コンプトン波長 ブラックホール半径 [ 4次元 ] ≫ 1 GeV : 1 Proton [ D次元 ] 例. LHC 加速器内 : EP,D ≒ TeV ⇒ mc2 ≧ TeV ≒ (proton mass)×103 ミニ・ブラックホール ! 8 5-dim. Black Objects [ 以降、5次元時空に注目 ] 4次元 : 漸近平坦 , 真空 , 定常 , 地平線の上と外に特異点なし ⇒ Kerr BH with S2 horizon only 5次元 : For above conditions ⇒ Variety of Horizon Topologies Black Holes Black Rings ( S3 ) ( S2×S1 ) 9 Asymptotic Structures of Black Holes • 4D Black Holes : Asymptically Flat ( time ) ( radial ) ( angular ) • 5D Black Holes : Variety of Asymptotic Structures Asymptotically Flat : : 5D Minkowski : Lens Space Asymptotically Locally Flat : : 4D Minkowski + a compact dim. Kaluza-Klein Black Holes 10 Kaluza-Klein Black Holes 4次元 Minkowski Compact S1 [ 4次元 Minkowski と Compact S1 の直積 ] 4次元 Minkowski 11 Squashed Kaluza-Klein Black Holes Twisted S1 [ 4次元 Minkowski 上に Twisted S1 Fiber ] 4次元 Minkowski 12 異なる漸近構造を持つ5次元帯電ブラックホール解 5D 漸近平坦 BH 5D Kaluza-Klein BH ( Tangherlini ) ( Ishihara - Matsuno ) r- r+ r- r+ 4D Minkowski 5D Minkowski + a compact dim. 13 Two types of Kaluza-Klein BHs 同じ漸近構造 rr+ r+ Point Singularity r- Stretched Singularity 14 Geodesics of massive particles 5D Sch. BH Squashed KK BH Stable circular orbit ⇒ 重力源周りの物理現象 (近日点移動等) に現れる高次元補正 15 Varieties of Black Holes 16 Varieties of Black Holes • 4D Einstein-Maxwell Black Holes with S2 horizons Static Rotating Uncharged Schwarzschild (M) Kerr (M,J) Charged Reissner-Nordstrom (M,Q) Kerr-Newman (M,J,Q) 17 • 5D Einstein-Maxwell Asymptically Flat ( Unsquashed ) Black Holes with S3 horizons ( No Chern-Simons term ) Static Rotating Uncharged Tangherlini (M) Myers-Perry ( M , J1 , J2 ) Charged Tangherlini (M,Q) Aliev ( Slowly ) ( M , J1 , J2 , Q ) Kunz et al. (Numerical) ( M , J1 = J2 , Q ) 18 • 5D Einstein-Maxwell Asymptically Locally Flat ( Squashed ) Black Holes with S3 horizons ( No Chern-Simons term ) Static Rotating Uncharged Dobiash-Maison ( M , r∞ ) Rasheed ( M , J1 , J2 , r∞ ) Charged Ishihara-Matsuno ( M , Q , r∞ ) ? ( M , J1 , J2 , Q , r∞ ) 19 • 5D Einstein-Maxwell-Dilaton Black Holes with S3 horizons ( general dilaton coupling constant α ) Static Rotating Unsquashed Horowitz-Strominger (M,Q,Φ) Sheykhi-Allahverdizadeh ( Slowly ) ( M , Q , Φ , J1 , J2 ) Squashed Yazadjiev ( M , Q , Φ , r∞ ) ? (M , Q , Φ , J1 , J2 , r∞ ) 20 • 5D Einstein-Maxwell-Dilaton Black Holes with S3 horizons ( general dilaton coupling constant α ) Static Rotating Unsquashed Horowitz-Strominger (M,Q,Φ) Sheykhi-Allahverdizadeh ( Slowly ) ( M , Q , Φ , J1 , J2 ) Squashed Yazadjiev ( M , Q , Φ , r∞ ) Allahverdizadeh-Matsuno ( Slowly ) (M , Q , Φ , J1 = J2 , r∞ ) 21 Charged Rotating Kaluza-Klein Dilaton Black Holes 22 5D Einstein-Maxwell-Dilaton System • Action ( α = 0 : Einstein-Maxwell system ) • Equations of motion 23 Anzats • metric • Killing vector fields : ∂/∂t , ∂/∂φ , ∂/∂ψ • Black Holes with two equal angular momenta • gauge potential • dilaton field ( r+ , r∞ : constants ) 24 How to obtain slowly rotating solutions (1) Static part ( a = 0 ) is given by Yazadjiev’s solution 25 Functions for static part • Yazadjiev’s solution ( a = 0 ) ( α → 0 : charged static Kaluza-Klein black hole solutions ) 26 How to obtain slowly rotating solutions (1) Static part ( a = 0 ) is given by Yazadjiev’s solution (2) Substituting the anzats into equations of motion (3) Discarding any terms involving O(a2) ⇔ Slow Rotation (4) Solving ordinary differential equation of f(r) 27 Slowly Rotating Solution new KK BH without closed timelike curve & naked singularity r+ : Horizon r∞ : Infinity 28 Three-sphere S3 ( S2 base ) ( twisted S1 fiber ) S1 S2 S3 29 Three-sphere S3 ( S2 base ) S2×S1 ( twisted S1 fiber ) S3 30 Shape of Horizon r+ • induced metric Squashed S3 Horizon • k(r+) > 1 ⇔ (S2 base) > (S1 fiber) • No contribution of rotation parameter a ( cf. vacuum rotating Kaluza-Klein black holes ) 31 Asymptotic Structure coordinate transformation 0<ρ<∞ • metric • gauge potential • dilaton field 32 Functions in ρ coordinate 33 Asymptotic Structure coordinate transformation 0<ρ<∞ • metric • gauge potential • dilaton field 34 Asymptotic Structure Taking ρ → ∞ ( r → r∞ ) with coordinate transformation : Asymptotically Locally Flat ( twisted S1 fiber bundle over 4D Minkowski spacetime ) 35 Three Limits 36 No dilaton Limit: α → 0 coordinate transformation Slowly rotating charged squashed Kaluza-Klein black holes 37 Asymptically Flat Limit: r∞ → ∞ Asymptotically Flat slowly rotating charged dilaton black holes 38 Black String Limit: ρ0 → 0 coordinates transformation Charged static dilaton black strings 39 Physical Quantities 40 Mass and Angular Momenta consistent with asymptotically flat case Gyromagnetic ratio g 41 Gyromagnetic ratio (g因子) g • 電子の磁気モーメントμ と外部磁場 B の相互作用 μ B Dirac eq. と比較 ⇒ • g因子:磁気回転比 μ/S とボーア磁子μB の比 Analogy : 電子 ⇔ charged rotating black holes (Carter, 1968) ( μ = Q a : “magnetic dipole moment” ) 42 Gyromagnetic ratios of (slowly) rotating black holes g=2 : 4D Kerr-Newman BH (Carter, 1968) g = n-2 : nD asymptically flat BH (Aliev, 2006) : nD asymptotically flat dilaton BH 5D asymptotically Kaluza-Klein dilaton BH 43 Gyromagnetic ratio of Asymptotically Flat dilaton BHs ( Sheykhi-Allahverdizadeh ) r+ = 2 & r- = 1 6D 5D 4D 44 Gyromagnetic ratio of 5D Kaluza-Klein dilaton BHs r+ = 2 & r- = 1 r∞ = 2.2 r∞ = 2.7 r∞ = rC r∞ = 4.8 r∞ = ∞ ( Asymptotically Flat ) 45 Conclusion • We obtain a class of slowly rotating charged Kaluza-Klein black hole solutions of 5D Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling constant α ( restricted to black holes with two equal angular momenta ) • At infinity, metric asymptotically approaches a twisted S1 bundle over 4D Minkowski spacetime • Behaviors of gyromagnetic ratio g crucially depend on the size of extra dimension 46 Future works (1) 今回: 5D charged slowly rotating Kaluza-Klein dilaton black holes with 2 equal angular momenta axisymmetric horizon 5D charged slowly rotating Kaluza-Klein dilaton black holes with 2 independent angular momenta 3軸不等な horizon (Bianchi IX) 47 Future works (1) • 5D charged (slowly) rotating Kaluza-Klein black holes in Einstein-Maxwell-Chern-Simons-Dilaton theory Chern-Simons Dilaton field naturally introduced by low energy limit of string theory ... • 5D charged (slowly) rotating Kaluza-Klein dilaton black boles with Cosmological Constant ⇒ numerical solutions ... ? 48 Future Works (2) More Higher-dimensions S3 : S1 bundle over CP1 ・・・ S2n+1 : S1 bundle over CPn Ex) S7 : S1 bundle over CP3 49 Future Works (2) Black Objects … Kasner spacetime ( Bianchi types ) … Dynamical ( Rotating ) BHs without Λ 50 Future Works (3) Test Maxwell Fields Ex) Wald Solutions ( vacuum background ) Kerr BH in Uniform Magnetic Field “ Misner effect ” for extreme BH 最内部安定円軌道 ( ISCO ) BH 51 Future Works (3) Black Strings in … Black Rings in … ( Charged ) squashed KK BH in …
© Copyright 2024 ExpyDoc