クォーク・グルーオン・プラズマにおける 「力」の量子論的記述 赤松 幸尚 (名古屋大学素粒子宇宙起源研究機構) Y.Akamatsu, A.Rothkopf, PRD85(2012),105011 (arXiv:1110.1203[hep-ph] ) Y.Akamatsu, arXiv:1209.5068[hep-ph] 2013/01/12 益川塾セミナー 1 Contents 1. 2. 3. 4. 5. 6. Introduction In-Medium QCD Forces Influence Functional of QCD Dynamical Equations (I) Dynamical Equations (II) Summary & Outlook 2013/01/12 益川塾セミナー 2 1. INTRODUCTION 2013/01/12 益川塾セミナー 3 Confinement & Deconfinement • Vacuum Potential Singlet channel V(R) T=0 4 s 1 M2 3 R String tension K ~ 0.9GeVfm-1 V ( R) KR R Coulomb + Linear The Schrödinger_ equation _ Mass spectra (cc, bb) 2013/01/12 益川塾セミナー 4 Confinement & Deconfinement • In-Medium Potential Debye screened potential V(R) T>TC 4 s exp D R 1 M 2 3 R Debye mass ωD ~ gT (HTL) V ( R) R Debye Screened Higher T The Schrödinger equation _ _ Existence of bound states (cc, bb) J/Ψ suppression in heavy-ion collisions What is the in-medium potential? 2013/01/12 益川塾セミナー Matsui & Satz (86) 5 Quarkonium Suppression at LHC • Sequential melting of bottomonia A+A p+p (2S ) (1S ) PbPb 2013/01/12 CMS (2S ) (1S ) pp (3S ) (1S ) PbPb (3S ) (1S ) pp 0.21 0.07(stat) 0.02(syst) 0.06 0.06(stat) 0.06(syst) 0.17(95%CL) 益川塾セミナー 6 What is the in-medium potential? 2. IN-MEDIUM QCD FORCES 2013/01/12 益川塾セミナー 7 In-Medium Potential • Definition r T=0, M=∞ (t ; R) vac J (t; R) J † (0; R) vac m J (0; R) vac exp iEm ( R)t † R 2 m ~ exp iEmin ( R)t e iV ( R )t Long time dynamics t G( ; R) vac J (i ; R) J † (0; R) vac ~ D[ A] e S ( A) σ(ω;R) ~ exp Emin ( R) e V ( R ) V(R) 2013/01/12 ω V(R) from large τ behavior 益川塾セミナー 8 In-Medium Potential • Definition T>0, M=∞ r (t ; R) T J (t ; R) J † (0; R) T m J (0; R) n e En ( R ) expi{En ( R) Em ( R)}t 2 † n ,m R W ~ ( n ,m ) i 0 ( ; T ) exp iE ( R)t lowest peak ~ exp i{V ( R, T ) i( R, T ) 2}t t σ(ω;R,T) i=0 G( ; R, T ) J (i ; R) J † (0; R) i=1 … Γ(R,T) i V(R,T) 2013/01/12 ω T W ( ; T ) exp E ( R) peak( i ) i Long time dynamics Lorentzian fit of σ(ω;R,T) ~ D[ A] e S ( A;T ) (0<τ<β) Spectral decomposition 益川塾セミナー 9 In-Medium Potential • Complex Potential (t ; R) T ~ W i 0 lowest peak Laine et al (07), Beraudo et al (08), Bramilla et al (10), Rothkopf et al (12). ( ; T ) exp iE ( R)t ~ exp i{V ( R, T ) i( R, T ) 2}t Long time dynamics Lorentzian fit of σ(ω;R,T) t t 2 ~ D( s) exp ds ( s) ( R, T ) exp i dsV ( R, T ) ( s) 0 0 Suggests stochastic & unitary description 2013/01/12 益川塾セミナー 10 In-Medium Potential • Stochastic Potential Akamatsu & Rothkopf (‘12) (t t , R ) exp itV ( R) (t , R) (t , R), (t , R ) 0, (t , R)(t ' , R ' ) ( R, R' ) tt ' / t , (T omitted) Introduce noise field Θ(t,R) Density matrix: Non-local correlation relevant (t, R1, R2 ) * (t, R1 )(t, R2 ) i (t , R) V ( R) ( R, R) (t , R) (t , R), Imaginary potential t 2 = Local correlation it (t , R) (t , R) (t , R) 2 (t , R) 2 , (t , R) 0 2 i 2013/01/12 益川塾セミナー 11 In-Medium Forces • M<∞ M=∞ Debye screened force + Fluctuating force M<∞ Drag force Langevin dynamics (Stochastic) Potential force Hamiltonian dynamics Non-potential force Not Hamiltonian dynamics How to describe in-medium QCD forces? 2013/01/12 益川塾セミナー 12 How to describe in-medium QCD forces? 3. INFLUENCE FUNCTIONAL OF QCD 2013/01/12 益川塾セミナー 13 Open Quantum System sys = heavy quarks env = gluon, light quarks • Basics Hilbert space H tot sys env von Neumann equation d i ˆ tot (t ) Hˆ tot , ˆ tot (t ) dt Trace out the environment Reduced density matrix ˆ red (t ) T renv ˆ tot (t ) Master equation i d ˆ red (t ) ? dt (Markovian limit) 2013/01/12 益川塾セミナー 14 Closed-Time Path [1ini ,2ini ] • Basics Partition function Z [1 , 2 ] T r Uˆ (,;1 ) ˆUˆ (,; 2 )† T r Uˆ (,; )† Uˆ (,; ) ˆ 2 1 1 1 ,1 2 2 ,2 ~ D1, 2 [1ini , 2ini ] exp iS [1 ] iS [ 2 ] i 11 i 2 2 i i ( xi ) ln Z [1 , 2 ] TC ˆi ( xi ) i j1, 2 0 T, conn 2 ln Z [1 , 2 ] 1 ( x1 )1 ( x2 ) j Tˆ ( x1 )ˆ ( x2 ) 2 ln Z [1 , 2 ] 1 ( x1 ) 2 ( x2 ) j ˆ ( x2 )ˆ ( x1 ) T, conn GF ( x1 , x2 ) 1, 2 0 T, conn G ( x1 , x2 ) 1, 2 0 2013/01/12 ... 益川塾セミナー 15 Closed-Time Path • Apply to QCD Z [ , ] ~ D[ 1 2 1, 2 q1, 2 A1, 2 ] [ q A1 * * 1 1 ini , 2 q2 A2 ini ] expiS[q A ] iS[q A ] ig j A ig j A exp iS[ 1 ] iS[ 2 ] i 11 i 2 2 1 1 2 2 1 1 2 2 eq tot env sys Factorized initial density matrix tot [ q A1 * * 1 1 ini , 2 q2 A2 Influence functional ini ] eq env * 1 [q A1 ini , q2 A2 ini ] sys [ 1*ini , 2ini ] Feynman & Vernon (63) Z qA [ j1 , j2 ] exp iS FV [ j1 , j2 ] ~ F A 2 exp g 2 j1G j j2G j j1GA j2 j2GA j1 g 3GA(3) jjj g 4GA( 4) jjjj 2013/01/12 2 F A 1 益川塾セミナー 16 Influence Functional • Open Quantum System Z [1 ,2 ] ~ D[ 1, 2 ]sys [ 1*ini , 2ini ] exp iS[ 1 ] iS[ 2 ] iS FV [ j1 , j2 ] i 11 i 22 1 sys [ 1*ini , 2ini ] s 2 1 (t ),1 (t ) 2 (t ),2 (t ) Path integrate until s, with boundary condition 1 (s) 1 , 2 (s) 2 red [ s, 1* , 2 ] 1* ˆ red ( s ) 2 2013/01/12 益川塾セミナー 17 Influence Functional • Functional Master Equation red [t , 1* , 2 ] ~ t , 1* , 2 Effective initial wave function D[ 1, 2 ] sys [ 1*ini , 2ini ] exp iS[ 1 ] iS[ 2 ] iS FV [ j1 , j2 ] Effective action S1+2 Single time integral Long-time behavior (Markovian limit) Analogy to the Schrödinger wave equation Functional differential equation * * i red [t , 1* , 2 ] H1func [ , ] [ t , 2 1 2 red 1 , 2 ] t How does this formalism work in perturbation theory? 2013/01/12 益川塾セミナー 18 How does this formalism work in perturbation theory? 4. DYNAMICAL EQUATIONS (I) 2013/01/12 益川塾セミナー 19 Approximations • Leading-Order Perturbation Influence Functional exp iS FV [ j1 , j2 ] exp g 2 ~ F A 2 2 j1G j j2G j j1G A j2 j2G A j1 F A 1 Expansion up to 4-Fermi interactions ˆ (x ) A ˆ (x ) , G (x x ) A ˆ (x ) A ˆ (x ) GAF ( x1 x2 ) TA 1 2 A 1 2 2 1 T ˆ (x ) A ˆ (x ) , G ( x1 x2 ) A 1 2 A T T ~ˆ ˆ (x ) G ( x1 x2 ) TA( x1 ) A 2 ~ F A T Leading-order result by HTL resummed perturbation theory 2013/01/12 益川塾セミナー 20 Approximations Q ~ MT Q • Heavy Mass Limit G ~ ( g )T G Non-relativistic kinetic term NR S[ ] S kin [Q, Qc ] ~ (Q, Q†c ) NR S kin [Q, Qc ] Q† [i 0 M 2 2M ]Q Qc [i 0 M 2M ]Q 2 † c Non-relativistic 4-current (density, current) ja0 Q† t a Q Qc t a Q†c a † a t Q Qc ja Q 2iM 2 iM 2013/01/12 益川塾セミナー a † t Qc Expansion up to ~ T M (quenched) 21 Approximations • Long-Time Behavior Time-retardation in interaction ~ ~ ~ G( x y, ) G( x y,0) G' ( x y,0) G ( x y) G ' ( x y) 0 0 G( x y) G ( x y) ( x 0 y 0 ) iG ' ( x y) ( x y ) 0 0 ( x y ) Low frequency expansion G ( x y ) j (t , x ) j (t , y ) j ( x ) G ( x y ) j ( y ) i xy t xy G ' ( x y) j(t, x ) j(t, y) j(t, x ) j(t, y) 0 0 2 Using free equation of motion 2013/01/12 益川塾セミナー 22 Effective Action • LO pQCD, NR Limit, Slow Dynamics NR NR LONR S12 Skin [Q1, Q1c ] Skin [Q2 , Q2c ] SFV [ j1, j2 ] V ( x y ) ( t , x ) ( t , y ) Stochastic potential 1a 1a LONR S FV [ j1 , j2 ] 1 2 (finite in M∞) t ,x , y V * ( x y) 2 a (t , x ) 2 a (t , y ) iD ( x y ) ( t , x ) ( t , y ) 1a 2a j1a (t , x ) 2 a (t , y ) t , x , y 1 4T D ( x y ) (t , x ) j (t , y ) 1a 2a g G ( x y ) iG00,ab ( x y ) V ( x y ) ab 2 g G00,ab ( x y ) D( x y ) ab ImV ( x y ) ab 2 2013/01/12 R 00 , ab 益川塾セミナー Drag force (vanishes in M∞) 23 Hamiltonian Formalism (technical) • Order of Operators = Time Ordered * Kinetic term (t , x) 1 (t , x ), 2 (t , x ) 2 (t , x ) * 1 Instantaneous interaction or Remember the original order • Change of Variables (canonical transformation) Make 1 & 2 symmetric ~ ~* ~ 2 (Q2 , Q2c ) 2* (Q2* , Q2c ) * ~* [ Determines H1func 2 1 , 2 ] without ambiguity 2013/01/12 益川塾セミナー 24 Hamiltonian Formalism (technical) • Variables of Reduced Density Matrix red [t , 1* ,~2* ] 1* ˆ red (t ) ~2* red [t , Q * 1( c ) Latter is better (explained later) ~* ~* * , Q2( c ) ] Q1( c ) ˆ red (t ) Q2 ( c ) • Renormalization Convenient to move all the functional differential operators to the right in ~ ~* ~* * * i red [t , Q1*( c ) , Q2*( c ) ] H1func [ Q , Q ] [ t , Q , Q 2 1( c ) 2(c ) red 1( c ) 2(c ) ] t In this procedure, divergent contribution from Coulomb potential at the origin appears needs to be renormalized 2013/01/12 益川塾セミナー 25 Functional Master Equation • Renormalized Effective Hamiltonian ~ˆ ~ˆ 2 M Q (same for Q Hˆ 1 2 aMQˆ†1 Qˆ1 Qˆ†1 2 2 M Qˆ1 (same for Qˆ1c ) x ~ˆ ~ˆ ~ˆ a * MQ†2 Q2 Q†2 2 2c ) 2 x a0 ˆ a0 * a0 ˆ a0 ˆ ˆ V ( x y ) N j1 ( x ) j1 ( y ) V ( x y ) N j2 ( x ) j2 ( y ) 1 a0 ˆ a0 ˆ 2iD( x y ) N j1 ( x ) j2 ( y ) 2 xy ˆ a ˆ a a 0 1 0 a D ( x y ) N j1, NR ( x ) ˆj2 ( y ) ˆj1 ( x ) j2 ( y ) 2T a 1 2013/01/12 CF limV (T 0 ) (r ), V (T 0 ) (r ) V (r ) V (T 0 ) (r ) 2 M r 0 益川塾セミナー 26 Functional Master Equation • Schrödinger wave equation Anti-commutator in functional space Qˆ ( x),Qˆ ( y) Qˆ 1 † 1 ˆ† ( x ), Q ( y ) ( x y ) Q1( c ) 1c 1c Q1*( c ) ~ˆ ~ˆ† ~ˆ ~ˆ† ~ Q ( x ), Q ( y ) Q ( x ), Q ( y ) ( x y ) Q 2 2c ~* 2 2c 2(c ) Q2( c ) Hˆ 12 H1func 2 i ~ ~* ~* * * red [t , Q1*( c ) , Q2*( c ) ] H1func [ Q , Q ] [ t , Q , Q 2 1( c ) 2(c ) red 1( c ) 2(c ) ] t So what? 2013/01/12 益川塾セミナー 27 So what? 5. DYNAMICAL EQUATIONS (II) 2013/01/12 益川塾セミナー 28 Density Matrix • Coherent State ~ ~ red t , Q1*( c ) , Q2*( c ) Q1*( c ) ˆ red (t ) Q2*( c ) Q1*( c ) exp Qˆ Q1* Qˆ c Q1*( c ) x ~ ~ * ~ˆ† ~ * ~ˆ† Q2*( c ) exp Q 2 Q Q2 c Qc x Source for HQs ˆ Q( x ) * 1( c ) Q Q1* ( x ) Q1*( c ) 0 ~* Q ~ 2(c ) Q2* ( x ) 2013/01/12 益川塾セミナー Qˆ† ( x ) ~ Q2*( c ) 0 29 Density Matrix • A few HQs One HQ † ˆ ˆ Q (t , x , y ) Q( x ) ˆ red (t )Q ( y ) Q ( x ) Q2 ( y ) * 1 ~ * * t , Q , Q ~ * red 1( c ) 2( c ) ~ Q1*( c ) Q2*( c ) 0 Similar for two HQs, … QQc (t, x1, x2 , y1, y2 ), 2013/01/12 益川塾セミナー 30 Master Equation • Functional Master Equation ~* ~* ~* * func * * i red [t , Q1( c ) , Q2 ( c ) ] H1 2 [Q1( c ) , Q2 ( c ) ] red [t , Q1( c ) , Q2 ( c ) ] t Functional differentiation ~ Q1* ( x ) Q2* ( y ) Color traced Master equation 2x 2y * i t Q (t , x , y ) a a M Q (t , x , y ) 2 M x D( x y ) x y C F iD( x y ) Q (t , x , y ) 4T iM 2013/01/12 益川塾セミナー 31 Master Equation • HQ Number Conservation T rˆ (t ) (t , x , x ) x Q i Q d T rˆ Q (t ) ( x y )i t Q (t , x , y ) 0 x, y dt • Ehrenfest Equation d dt d dt d dt x p M p , p , CF 2 g (T ) 2 CF 2 ~ D( x) G00,aa ( 0, x) x 0 x 0 3 9 2 MT 2 3 ~ 3T g (T ) CF d k k 2G E E . 00 , aa ( 0, k ) 3 9 ( 2 ) MT 2 Moore et al (05,08,09) 2013/01/12 益川塾セミナー 32 Other Results • Complex Potential (t ; x , y ) T † J (t ; x , y ) J (0; x0 , y0 ) 2 ~* * Q , Q red 1( c ) 2( c ) , t * * Q1 ( x )Q1 ( y ) T ~ Q1*( c ) Q2*( c ) 0 Time-evolution equation + Project on singlet state g (T ) 2 CF Vsinglet ( R) 2(a 1) M CFV ( R) 4 e D R D iT D R R Laine et al (07), Beraudo et al (08), Brambilla et al (10) 2013/01/12 益川塾セミナー 33 Other Results • Stochastic Dynamics M=∞ : Stochastic potential Debye screened potential LONR exp iS FV [ j1 , j2 ] exp i 2 Re V ( x y )1a (t , x ) 1a (t , y ) 2 a (t , x ) 2 a (t , y ) t,x, y exp i a (t , x )1a (t , x ) 2 a (t , x ) t , x , y Fluctuation a (t, x)b (s, y) ab (t s)D( x y) D(x-y): Negative definite M<∞ : Drag force Two complex noises c1,c2 Non-hermitian evolution 2013/01/12 ~ Q (t , x, y) (t , x )(t , y) ~ * (t , x ) (t , x ) 益川塾セミナー ,c1 ,c2 34 6. SUMMARY & OUTLOOK 2013/01/12 益川塾セミナー 35 • Quantum Dynamics of HQs in Medium – Stochastic potential, drag force • Non-Equilibrium Quantum Field Theory – Open quantum system, closed-time path, influence functional – Functional master equation, master equation, etc. • Non-Perturbative Region – Model the renormalized effective Hamiltonian – Higher-order perturbative analyses (process involving real gluons) – Application to phenomenology 2013/01/12 益川塾セミナー 36
© Copyright 2024 ExpyDoc