ひので SOT 2013.11.26 一本 観測&装置ゼミ 1.可視光望遠鏡概要 - Optical Telescope Assembly (OTA) - Focal Plane Package (FPP) OTA: f50cm Gregorian Telescope FPP: M2 HDM (Heat Dump Mirror) • OTAとFPPはコリメート光で結び構体変形による焦点移動を 回避 • PMUは瞳像の近くにおきゴミやむらによる輝度変調を排除偏 • 偏光モジュレータ(PMU)までは軸対称な光学系 MT = E • FPPに向かう光線はTip-tilt mirrorにより像安定化 2次焦点絞り M1 CLU (collimator Lens Unit) PMU (Polarizaiton Modulator Unit) Tip-tilt mirror OTA FPP OBU SOTセミナー@花山 2004.12.7 OTA光学系の基本パラメータ Gregorian telescope Exiting beam Aperture area f500mm, 153434mm2 Linear central obscuration 0.344 ( = 172/500 ) HDM outer diameter 32.83mm (Maximum offset pointing angle) Effective f-length at secondary focus 4527 25 mm Effective F-ratio at secondary focus 9.055 0.05 Plate scale at secondary focus 21.95 mm/arcsec Field of view 360 x 200 arcsec Collimation Collimated in air Angular magnification 16.667 Exit pupil size f30.0 mm Exit pupil position -73.05 from tip-tilt mirror Chromatic aberration Nearly zero (<35mm 388—670nm) SOTセミナー@花山 2004.12.7 排熱鏡の大きさで決まるSOT(Solar-B)の指向範囲 FOV of Heat Dump Mirror D◎=32’35” Sun SOT FOV max.offset = 19.6’ margin ~1.2’ HDM外径 32.83mm Maximum offset pointing of Solar-B < 19.6’ OTA斜入射危険領域MAP 第2待避領域 q = 25+5o 排熱窓 HDM 全頂角22oコーン 許容滞在時間 ∽ 排熱窓 +Y 遷移領域 許容滞在時間 8min – 10hr 主鏡に入射。熱が内部にこもる Center sec. ~ 45W Cold plate ~ 72W Truss ~ 26W(合計) Sun shade裏 ~ 40W q = 10 ~ 16o 許容滞在時間 ~12 hr 118o 90o 遷移領域 q = 10 ~ 16o 許容滞在時間 12 hr - ∽ 排熱窓 副鏡 全頂角11oコーン 許容滞在時間 ∽ +X 30o 20o ~16o ~10o 4o 衛星後部から太陽を指向 したときの衛星座標軸 安全領域 q > 20o 許容滞在時間 ∽ 内スパイダー ~ 240W/cm2 0.327o < q < 4o 許容滞在時間 < 20 min 比較的安全領域 4.5o < q < 9o f = 0,120,240o + 10o 開口からの排熱 ~ 100W CLU, PMU, CTM-TM温度 ~90C 許容滞在時間 > 10 hr 排熱鏡円筒 ~ 90W/cm2 副鏡 ~ 215W 0.327o < q < 4o 許容滞在時間 < 20 min 外スパイダー ~ 10W/cm2 4o < q < 10o, f = 60, 180, 300o + 15o 許容滞在時間 < 8 min 安全領域(通常観測時) q < 0.327o 2000.12.04 MELCO-OTA/NAOJ 2次絞りでも不要な光を排熱 M1 (FM sample) M2 (FM sample) CTM-TM (theoretical) CLU (FM measurement) BFI wavelengths NFI wavelengths 8 Optical layout of SOT Litrow Mirror Polarizing BS Spectoro-polarimeter Dual 256 x 1024 CCD X3 Mag lens Polarizing BS Folding Mirrors Shutter Slit Field lens Grating Filterwheel Field lens X2 Mag lens Shutter Preslit Broadband Filter Instrument Filterwheel Field Mask 4096 x 2048 CCD Narrowband Filter Instrument 50 x 50 CCD Secondary Telecentric Correlation Tracker lenses Demag lens Beam Distributor Reimaging Lens Folding Mirror Folding Mirror Image Offset Prisms HDM Folding Mirror Astigmatism corrector lens OTA Primary Polarization Modulator CLU Tip Tilt Mirror Color Coding OTA Common Optics CT NFI BFI 9 SP FPP光学レイアウト SP-CCD PBS SP PBS BFI NFI CT-CCD - (X, l, P) を同時取得するSP系と(X, Y, P) を同時取得するFG系の共存 - SPはCCD直前のPBSにより両偏光同時取得 - BFIのメカシャッタは像面におき回折限界を確保、 NFIのメカシャッタは瞳位置におき像面内の波長板位相差をなくす - NFIを通る光線はテレセントリックとし、透過波長は像面内で一様とする SOTセミナー@花山 2004.12.7 FG-CCD SP CCD Radiator SP CCD Electronics SP Littrow Grating BFI/NFI Beam Combiner SP Slit SP Littrow Mirror BFI Shutter BFI Filterwheel NFI Focalplane Mask Beam Distributor SP Slit Scanner NFI Shutter NFI Lyot Filter NFI Filterwheel CT CCD Electronics CT wedge wheel SOTセミナー@花山 2004.12.7 FPP Mechanical Design BFI/NFI CCD Radiator BFI/NFI CCD Electronics SOT観測波長 Ion CN I Ca II H CH I Mg I b Fe I Fe I Fe I Fe I Na I Fe I Fe I Ti I HI l,Å 3883.0 3968.5 4305.0 4504.5 5172.7 5247.1 5250.2 5250.6 5550.5 5576.1 5895.9 6301.5 6302.5 6303.8 6320.0 6562.8 6684.0 SOTセミナー@花山 2004.12.7 Purpose Magnetic Network Imaging Chromospheric Heating Magnetic Elements Blue Continuum Chromospheric Dopp./ Mag. Photospheric Magnetograms Photospheric Magnetograms Photospheric Magnetograms Green Continuum Photospheric Dopplergrams Chromospheric Dopp/Mag. Photospheric Magnetograms Photospheric Magnetograms Umbral Magnetograms Broadband WL for CT Chromospheric Structure Red Continuum geff BFI NFI SP CT 1.33 - 1.75 2.00 3.00 1.50 0.00 1.33 1.67 2.50 0.92 - SOT観測量と基本スペック フィルター観測系 (FG) 広帯域フィルター系 狭帯域フィルター系 (BFI) (NFI) 役割 高分解能単色像の取得 2次元磁場、速度場、 彩層画像の取得 1回の観測量 空間2次元 x1波長 空間2次元 x1波長 x 偏光 視野 218" × 109” 328” × 164” 空間分解能 0.054”/pix 0.08”/pix 観測波長 388.3: CN band Fe I 525.0: 光球磁場 396.8 (CaII H): 彩層 Mg Ib 517.3: 彩層磁場、速度 430.5: CH G-band Fe I 557.6: 光球測度場 450.5/555.0/668.4 連続 Na D 589.6: 彩層磁場 光 Fe I 630.2: 光球磁場 H I 656.3 (Hα): 彩層 波長分解能 3-10A ~100mA 波長点数 1 1-4 or > 4 取得時間(狭視野) 1-10 sec ~5sec (全視野) 10-30 sec 測光精度 0.3 % 0.1-0.5% SOTセミナー@花山 2004.12.7 スペクトログラフ観測系 (SP) 高精度ベクトル磁場の取得 空間1次元 x 波長1次元 x 偏光 328” × 164” 0.16”/pix, 0.16” slit&scan step Fe I 630.2: 光球ベクトル磁場 ~20mA/pix 244 ~5sec ~1 hr < 0.1% Tunable Filter compositionlength (mm) 1 2 3 4 5 6 7 8 PBS Entrance window calcite 10.50 quaterwave polaroid Motor-1 halfwave Motor-2 quaterwave calcite 28.00 partial polaroid calcite 56.00 quaterwave polaroid Motor-3 halfwave Motor-4 quaterwave calcite 8.75 polaroid calcite 7.00 quaterwave polaroid Motor-5 halfwave Motor-6 quaterwave calcite 56.00 partial polaroid calcite 112.00 quaterwave polaroid Motor-7 halfwave Motor-8 quaterwave calcite 14.00 Ext window SOTセミナー@花山 2004.12.7 normalized length 6 16 32 5 4 32 64 8 半値幅~100mA Partial polarizer を用いたLyot ブロック polarizer calcite Partial polarizer L calcite polarizer 2L p (p=1で完全偏光板)を小さくするとサイドローブが 抑制される。 Lと2L calcite の速い軸が90o違っていることがミソ。 間のpolarizer がなかったらL+2L でLのLyot element と等価、その電場がサイドローブの2L電場 を打ち消す。(Title 1974, Sol.Phys., 38, 523.) Schematics of the SOT polarimeter Collimator lens unit (CLU) Polarization modulator unit (PMU) HDM CTM-TM Astigmatism corrector lens (ACL) M2 M1 Mech. Mask wheel shutter NFI- Polarization analyzer Reimaging lens Tunable filter FG/NFI Non-polarizing beam splitter FG-CCD Blocking filter wheel SP Slit scan mirror Slit SP- Polarization analyzer (beam splitter) SP-CCD left/right 16 Appendix-6: PMU waveplate (2007.02.11 BFI retardation from D.Elmore) 5.35l @630nm 6.65l @517nm The thermal constraint required the quartz and sapphire parts have a thickness ratio of 1.17. Our compromise: approximately maintain that ratio, while searching for dual-wavelength designs meeting the N ± 0.35 specification. We succeeded with 5.35 waves at 630 nm and 6.65 waves at 517 nm. Crystal Retarder Design Strategies: A Tutorial By Stephen J. Guimond, Meadowlark Optics and David F. Elmore, High Altitude Observatory, National Center for Atmospheric Research* l 388.350 396.850 430.500 450.450 517.200 525.000 555.050 589.600 630.200 656.300 668.400 d 9.3380 9.0947 8.2507 7.8240 6.6822 6.5720 6.1664 5.7624 5.3442 5.1095 5.0086 17 Polarization modulation and demodulation V U Q Waveplate angle [deg.] PMU segment SP onboard demodulation 0 + + + - 1 + + - 2 + - 3 + + - 4 + + + + 5 + + + 6 + + 7 + + + 8 + + + - 9 10 11 12 13 14 15 + + + + + + + - + + + + - + + - - + + + + I’ Q’ U’ V’ 18 SOT modulation profiles from the measured PMU retardance 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 V Q U Wavelength (nm) Retardation (wave) 517.3 6.682 525.0 6.572 589.6 5.762 630.2 5.344 656.3 5.110 19 Detection limit of FG for the weak magnetic fields, e = 0.001 Wavelength (nm) geff G Pol. Sensitivity (diagonal element of X) Detection limit for B (Gauss) V QU Bl Bt MgI 517.2 1.75 2.88 0.577 0.452 37 970 FeI 525.0 3.00 9.00 0.266 0.609 15 210 FeI 557.6 0.00 0.00 - - - - NaI 589.6 1.33 1.33 0.633 0.297 21 1240 FeI 630.2 2.50 6.25 0.526 0.503 10 240 HI 656.3 1.33 1.33 0.402 0.073 78 >5000 B// ~ 1 1 e x33 g eff l2 dI ' / dl max B 2 ~ 1 x11 G l2 2 I’: line profiles convoluted by TF transmission curve 1 d 2 I ' / dl2 e G G1(2) - G0(2) 2nd moments of s and p-components max 20 SOT polarimetric observables SP (Spectropolarimeter) FeI 6301 & 6302A full Stokes profiles Dual beam Continuous readout, 16 frames/rev. Onboard demodulation/accumulation NFI (Narrowband Filter Imager) 0.1A Lyot filter Shutter mode Shutterless mode Use mechanical shutter Expose entire CCD simultaneously Continuous readout, 16frames/rev Central portion w/ focal plane mask CCD 1 Example of shutter timing Stokes-V obs. 2 Left/right sequential frame transfer 21 SOT observables FG: - simple image - Dopplergram (2 wavelengths) - Stokes IV - Stokes IQUV - IVDG (2 wavelengths) SP: - normal mode (0.16” step, 4.8s/slit) - fast mode (0.32” step, 3.2s/slit) - dynamic mode (0.16” step, 1.6s/slit) - deep mode (0.16” step, 9.6s/slit) 22 試験 • • • • • • 光学性能 機械環境 熱光学 微小擾乱 偏光特性 アウトガス 23 5. OTA flight model integration clinometer Vertical meter OTA is integrated on a dedicated tower. Interferometoric measurement is performed with f60cm reference flat at the top of tower. OTA can be upside top and upside down to cancel gravity. Target mirror Reference flat Alignment cube M2 Dummy OBU OTA Interferometer MiniFiz Six axis stage Rotation mechanism M1 Telescope Up Optical bench 24 OTA光学測定 SOTセミナー@花山 2004.12.7 OTAの結像性能 OTA波面 重力変形による3角アス 上下反転により求めた無重力での WFE 20nm rms ~ l/32 rms @633nm || Strehl ~ 0.96 軌道上温度変化により徐々に劣化する. ミッション期間 において Strehl > 0.8 SOTセミナー@花山 2004.12.7 OTA Opto-thermal testing -- motivation Predicted OTA temperature in orbit -1.7 ~ 25.0 C Heater control -21.5 ~ 4.4 C -27.8 ~ 4.6 C 21.1 ~ 67.3 C 1.1 ~ 16.3 C Large T from the ground testing. Large dT/dz. 19.9 ~ 43.2 C 16.0 ~ 30.0 C 26.2 ~ 45.7 C Heater control 27 OTA Opto-thermal testing -- configuration Reference mirror OTA pointing ax. Theodolite OTA center of FOV Upper shroud OTA WFE of OTA is measured in a dedicated vacuum Dummy OBU chamber. Two shrouds control the OTA temperature as it is in orbit. Support interferometer theodlite alignment cube. OTA alignment cube Lower shroud flat mirror Tilt/shift stage shroud Flat mirror reference Autocollimator OTA pointing ax. 28 ・副鏡ヒータOn/Off でフォーカスがガンガン変わる ・排熱鏡スパイダーの温度でフォーカスが変わる ・望遠鏡が真空中で縮む ・スパイダーに張ったケーブル止めメタルでフォーカス が変わる ・主鏡面形状の温度による不連続変化 29 2.擾乱源 Solar-Bの中にある可動物 モメンタムホイール(MW x 4台)、 慣性系基準装置(ジャイロ:IRU-A, IRU-B)、 FPP SOT: IRU-B1,B2 XRT: IRU-BOX IRU-SA EIS: Fホイール3台、シャッター2個、 回転波長板1個、チュナブルフィルタ、 スリットスキャン、計8 Fホイール2台、シャッター1個 可視光シャッター1個、フォーカス、 計5 スリットタレット1台、シャッター1個 ミラーtilt粗微、計4 擾乱の周波数と大きさ(擾乱力は初期予想値) MW . 擾乱源 擾乱力(N) 擾乱周波数(Hz) IRU-A 0.3 130 IRU-B1,B2 1 155 MW 0.1~1 30~50 「ひので」可視光望遠鏡の像安定要求 = 0.09”(3s) / 10sec 像の振動と点像の劣化 l=500nm l=390nm 要求値 画像が1方向に正弦波的に振動したときの回折限界点像(上:500nm, 下:390nm)。 SOT system overview CCD 50 x 50pix, 540Hz 像安定化装置(CT)が画像を安定化するのは15Hz 以下。 32 2006.10.31 CT servo-On, error signal/TM angle time profiles Servo-off 2010.2.5 3.指向擾乱測定方法 加速度センサーによる測定 望遠鏡鏡に加速度センサー取り付け 衛星バネ吊り MTM レーザー光による測定 FPP光学センサーによるend-to-end 衛星床置き FM 630nm tunable laser theodolite PSD dolly 長所:建物からのノイズが小さい Free-Free境界条件の模擬ができる 短所:像擾乱の間接的な測定、M1//M2のみ 長所:光学的にend-to-end な測定 短所:建物からのノイズが大きい 軌道上と境界条件が異なる 一噛み(2004.11)における2つの測定(フライト品) 衛星をバネで吊り上げ、望遠鏡の鏡に取り付けた加 速度センサーで擾乱を測定する。 衛星を頑丈なタワーの中に置き、光を望遠鏡に入れ て画像から擾乱を測定する。 Seq.4 吊り下げ total 周波数方向に積分したモメンタ ムホイールによる指向誤差。 1800+100rpm or 2800+100rpm 最終フライトモデルによる擾乱測定結果 0.07 Before vib. 2005.9.28 Post-vib. 2005.10.26 Post-TV. 2006.7.8 arcsec rms 0.06 0.05 0.04 0.03 0.02 0.01 IRU-B1/2 -Y IRU-B1/2 -X IRU-A -Y IRU-A -X XRT-FW2-Y XRT-FW2-X XRT-FW1 -Y XRT-FW1 -X XRT-VLS -Y XRT-VLS -X FPP-BFI-FW -Y FPP-BFI-FW -X FPP-NFI-FW-Y FPP-NFI-FW -X 0 主な稼動メカニズムについて総合試験における3回の測定結果を並べて表示してある。要求レベル (0.03”rms)を超えているのはXRT-VLS(可視光シャッタ)のみである。XRT-VLSについては使用頻度を 低く抑える(1時間に1回程度)ことで観測への影響を回避する。 Configuration of a spectro-polarimeter S can be modeled by a chain of Mueller matrices S’ detector Telescope, MT Spectrometer, Polarization analyzer, MA MF Feed optics, MB Polarization modulator, MP,k S'k = MFMAMBMP, k MTS = MS S: incident stokes vector S’k: Stokes vector at detector MT Upper stream telescope MP Polarization modulator (PM) Ex. Rotating waveplate MB Between PM and PA Folding mirror MA Polarization analyzer (PA) Polarizer, polarizing beam splitter MF After PA Filter, detector 39 Schematics of the SOT polarimeter Collimator lens unit (CLU) Polarization modulator unit (PMU) HDM CTM-TM Astigmatism corrector lens (ACL) M2 M1 Mech. Mask wheel shutter NFI- Polarization analyzer Reimaging lens Tunable filter FG/NFI Non-polarizing beam splitter FG-CCD Blocking filter wheel SP Slit scan mirror Slit SP- Polarization analyzer (beam splitter) SP-CCD left/right 40 Flow of the polarization measurement ‘Polarization measurement’ is achieved by measuring a number of I’ (first element of S’) at different Mp I’k = mI,k I + mQ,k Q + mU,k U + mV,k V k = 1,2,,,,N modulation: I '1 m11,1 I ' 2 m11, 2 I' m N 11, N m12 ,1 m13,1 m12 , 2 m13, 2 m12 , N m13, N demodulation: S = D I’ for N > 4 m14 ,1 I m14 , 2 Q U V m14 , N I ' m11 m12 Q' m21 m22 U ' m m32 31 V ' m 41 m42 m13 m23 m33 m43 m14 I m24 Q m34 U m44 V S’k = Mk S obtain S from [I’] I’ = W S W: 4 x N matrix polarization measurement matrix D : N x 4 demodulation matrix D = ( Wt W)-1 Wt --- least square solution of S (ideal demodulation matrix) 41 Polarization modulation and demodulation V U Q Waveplate angle [deg.] PMU segment SP onboard demodulation 0 + + + - 1 + + - 2 + - 3 + + - 4 + + + + 5 + + + 6 + + 7 + + + 8 + + + - 9 10 11 12 13 14 15 + + + + + + + - + + + + - + + - - + + + + I’ Q’ U’ V’ 42 Flow of the polarization measurement SOT polarimeter Incident to polarimeter Polarization modulation + noise modulated intensity Incident Stokes vector ST = TS I’ = W ST + e I’ S Telescope ST on-board demodulation S’ = D I’ X: Polarimeter response matrix (4x4) S’ = X S Measurement error: S S’ S” SOT product Ground calibration reduced Stokes vector Xr-1S’ S” X : true matrix Xr : matrix determined by polarization calibration Calibration error: S” = S” – S = Xr-1 XS – S = (Xr-1 X – E) S Statistical noise: dS” = Xr-1dS’ = Xr-1 e 43 Requirement on X Calibration error : S = S” - S = { Xr-1X- E } S Statistical noise : dS” = Xr-1dS’ = Xr-1e e e , e, e, e t photometric noise Requirement = X -1 r S < dS” -1 X - E S < Xr ε X - Xr S X S < ε X ≡ X- Xr : required accuracy for Xr 44 Requirement on X X S < e Scale errors 11 12 i q X S 21 22 31 32 u v 41 42 13 23 33 43 14 1 e 24 q e < 34 u e 44 v e [ Q,U,V ] / I = Pobs = (1 + ds) Preal + db false signal error < e scale error < a (allow ambiguity, cf. Stokes inversion) Difference between p= 0% and p= 0.1% is important, but difference between p=10% and p=10.1% is not important 45 Requirement on X Scale errors 11 12 i q X S 21 22 31 32 u v 41 42 Let’s 13 23 33 43 14 1 e 24 q e < 34 u e 44 v e q, u pl - maximum linear polarization from the sun v pc - maximum circular polarization from the sun Consider individual elements and allow scale error < a then 11 < a, 12 pl < a, 12 pl < a, 14 pc < a 21 < e , 22 pl < a, 22 pl < e , 24 pc < e 31 < e , 32 pl < e , 32 pl < a, 34 pc < e 31 < e , 42 pl < e , 42 pl < e , 44 pc < a 46 Requirement on X Scale error - a / pl a / pl a / pc e a e / p e / p l c X < e e / pl a e / pc e e / p e / p a l l Hinode, SOT e = 0.001 a = 0.05 pl = 0.15 (max of Q,U) pc = 0.2 (max of V) 0.001 X < 0.001 0.001 0.333 0.050 0.007 0.007 0.333 0.007 0.050 0.007 0.250 0.005 0.005 0.050 Tolerance of X (≡ O) Goal of polarization calibration is to determine the polarimeter response matrix, X, with an accuracy defined by this tolerance matrix. 47 Polarization tolerance of optical element How to specify the required accuracy for polarization properties of individual optical elements 1. Calculate polarimeter response matrix with and without an error (p) of polarization property of an element. 2. Compare X ≡ X- Xr with the tolerance matrix (O) 3. If all elements of |X| are smaller than the corresponding elements of O, then error p is acceptable, if one of them exceeds, then error p is not acceptable. 48 Tolerance of optical element Example: rotating waveplate S φ I' Q' U ' V ' X (q) I Q U V ret: δ, angle: q Tolerance of angle ~ 0.1deg. from Q-U crosstalk X (d) Tolerance of ret.~ 3.7deg. from V scale error 49 Tolerance of optical element Polarimeter model MT = E MP = ideal rotating waveplate with d =126.7deg. 16 sampling MB = MCTM-TM MA = Mdiat with k=0.01 MF = Mdiat with k=0.001 MA 0.0010 (IQ,U) 0.0053 (UV) 0.0073* (Q-U) No matter Retardation (deg) 0.286 (VU) 3.687 (dV) 0.419* (QV) No matter MF No matter No matter Location Diattenuation MT MP MB Orientation Depolarization (deg) 0.050 No matter (dQ,U,V) 0.050 0.095 (dQ,U,V) (Q-U) 0.050 0.100 (U-Q) (dQ,U,V) No matter 0.233 (Q-U) No matter 2.100 (Q-U) * For errors whose axes are 45o to the PA-axis. Such error can occur for off-axis rays (~0.7deg.160” 50 in FOV) in collimated beam entering on CTM-TM or BS. Appendix-4: CLU coatings theoretical polarization Calibration flow of SOT polarization (2006.2.27) CLU glass stress measurement (in NAO) 45o Ag coating theoretical polarization Calculate MTTM over FOV CTM-TM (FM and flight Spare) Polarization Test (in Japan) MTTM over FOV Spare TTM MTTM =const CLU coat samples measurement (in HAO) Acceptance tests of FPP optics (in PaloAlto) MPMU, MFPP over FOV Measure X with PMU+TTM+FPP (in PaloAlto) Calculate X over FOV X over FOV Ag coat sample check measurement (in HAO) check CLU Polarization Test (in Japan) •over field of view •over pupil plane •vs temperature •vs vibration/T-cycle Ag coating theoretical polarization Calculate MCLU over FOV •vs temperature •vs temperature gradients MCLU over ACL Polarization Test FOV & Temp •over field of view •vs temperature MACL over MCLU !=1 FOV & Temp Obs. sequence (XMT)-1 calibration matrix over field of view Calculate MGT over FOV MGT over FOV MGT ~1 MACL ~1 MT !=1 MT over FOV & (Temp) MGT = Gregorian Telescope Mueller Matrix MCLU = CLU Mueller Matrix Tuning after launch using observed data SOT polarization cal @Suntest (in NAOJ) MACL = Astigmatism Corrector Lens Mueller Matrix MT = MACL MCLU MGT X = PMU+TTM+FPP Polarimeter Response Matrix51 Tolerance of optical element Another example: CLU (Collimator Lens Unit) Collimator lens unit (CLU) Polarization modulator unit (PMU) HDM CTM-TM Astigmatism corrector lens (ACL) M2 M1 Mech. Mask wheel shutter NFI- Polarization analyzer Reimaging lens Tunable filter FG/NFI Non-polarizing beam splitter FG-CCD Blocking filter wheel SP Slit SP-CCD left/right Slit scan mirror SP- Polarization analyzer (beam splitter) 52 Tolerance of optical element Another example: CLU CLU Mueller matrix image at different temperatures (example) T=15C (from 20C) T=30C (from 40C) Rectangular shows the SOT field of view. Interval of contours indicates the tolerance of each Mueller matrix element. 54 Hysteresis of (3,4) element (=linear retardation) of the CLU Mueller matrix against temperature after 4th cold cycle after vibration after 2nd /3rd cold cycle after 1st cold cycle initial torelance CLU operational temperature was set as 25C < T <35C 55 2. Polarization calibration test method Test configuration Heliostat mask window (I,Q,U,V) - Entire SOT is located under a heliostat in a clean room. - Sunlight fed by the heliostat - Sheet polarizers (linear, L/R circular) on OTA - Room T=20C, CLU T>25C Sheet polarizer FPP 56 Definition of SOT polarization coordinate This definition is applied to the Stokes vectors obtained after application of the X-matrix. Raw Stokes products of FPP are not consistent with this definition. -Q -U +U N -V -Q -U FPP +U W +Q E +Q +V -V S/C +Y +V S S/C +X View from the top of SOT View towards the sun This definition is the same as that used in the analysis of the suntest data of 2004.8 and consistent with the ASP definition, ie. positive V at blue side of spectral line gives positive magnetic flux. This is also consistent with the definition of Stokes V: (right circ. – left circ.), where right circular polarization is positive when electric vector rotates clockwise looking at the source. 57 SP: Fitting results for polari. cal. data SP: CCD center SOT product I Symbols: observed Lines: fitting SOT product Q,U,V U Left CCD Right CCD Q V 58 SP X matrix x matrices at scan center; CCD image each element is scaled to median + tolerance, x00 (=1) is replaced by I-image Median Mueller matrix Left 1.0000 0.0028 0.0022 -0.0034 -0.2232 -0.0142 -0.0063 -0.4819 -0.0642 0.0007 -0.0529 0.4814 -0.0030 -0.0026 0.0043 0.5249 Right 1.0000 -0.0039 -0.0021 0.0035 The X matrix can be regarded as constant over the CCD. 0.2077 0.0199 -0.0079 0.4886 0.0551 0.0005 0.0427 -0.4918 0.0034 0.0013 -0.0044 -0.5304 59 spxmat_0506p.pro x-matrix elements against the scan position Each point is the median in the CCD, scale = average + 0.01, dotted horizontal lines show tolerances for each element 2005/06/13 Asterisk: Left CCD Diamond: right CCD Include 5/14 data at scan center spxmat_0506p.pro The x matrix can be regarded as constant over the scan position 60 Polarization test summary, NFI T matrix Average T matrix STD deviation of fitting residual 6563 0.9893 -0.0121 -0.0052 -0.0049 -0.0420 0.9541 0.0088 -0.0285 -0.0491 0.0190 0.9764 -0.0135 0.0018 0.0072 0.0205 1.0070 0.0000 0.0006 0.0010 0.0008 0.0117 0.0025 0.0011 0.0010 0.0296 0.0005 0.0015 0.0019 0.0113 0.0009 0.0013 0.0067 6303 0.9976 0.0108 0.0030 -0.0050 0.0101 0.9990 0.0131 0.0437 0.0276 0.0145 0.9983 0.0099 0.0031 -0.0025 -0.0157 0.9763 0.0000 0.0069 0.0080 0.0021 0.0020 0.0087 0.0022 0.0079 0.0010 0.0062 0.0036 0.0017 0.0086 0.9951 0.0091 0.0013 -0.0099 0.0008 0.9970 0.0147 -0.0178 0.0730 0.0144 1.0021 0.0111 -0.0006 -0.0010 -0.0143 0.9927 0.0075 0.0046 0.0016 0.0031 0.0107 0.0018 0.0049 0.0009 0.0028 0.0013 0.0019 0.0103 0.9994 0.0113 0.0030 -0.0169 0.0061 0.9996 0.0136 -0.0459 0.0141 0.0131 1.0031 0.0025 -0.0082 0.0011 -0.0169 0.9931 0.0040 0.0083 0.0033 0.0015 0.0148 0.0046 0.0137 0.0020 0.0199 0.0027 0.0042 0.0074 0.9998 -0.0007 -0.0018 -0.0139 0.0007 1.0003 0.0093 0.0543 -0.0296 0.0077 0.9863 -0.0246 -0.0458 -0.0077 0.0149 0.9901 5896 5250 5172 0.0028 0.0012 0.0015 0.0000 0.0018 0.0018 0.0010 0.0000 0.0032 0.0043 0.0011 - - - - SP product from Suntest in Aug.2004 FeI6302A SOTセミナー@花山 2004.12.7 I Q U V SP polarization in continuum (x=0-4) min ~ -0.13% 63 Lites and Ichimoto, 2013, Sol.Phys. Trend of SP Q/I in continuum 1st spectrum each day Continuum in x=0-4, only CCD left Averaged in slit center +/- 10 Dark is not subtracted from I Slit-pos < -500 Slit-pos = -500 ~ -100 sp_longtrend.pro BFI 光量の変遷
© Copyright 2024 ExpyDoc