Development of a large area VUV sensitive gas PMT

Solar Neutrino Analysis of
Super-Kamiokande
ICRC2013 @Rio de Janeiro
8 July 2013
Hiroyuki Sekiya
ICRR, University of Tokyo
for the Super-K Collaboration
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
1
Super-Kamiokande




50kton pure water
Cherenkov detector
1km (2.7km w.e)
underground in Kamioka
11129 50cm PMTs
in Inner Detector
1885 20cm PMTs
in Outer Detector
Physics targets of Super-Kamiokande
Atmospheric ν
~3.5 MeV ~20
~100
~1 GeV
TeV
Low energy
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
2
nx + e→ nx + e-
Solar neutrinos
observation
Hiroyuki Sekiya
ne
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
3
Current motivation

Check the direct signals of the MSW effect
Solar matter effect
Energy spectrum up-turn
Earth matter effect
Flux day-night asymmetry
Neutrino survival probability
Vacuum oscillation
dominant
Matter oscillation
dominant
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
4
New SK-IV results

Results from 1306.3 days of SK-IV data
SK-IV Hardware improvement
◦ Better water quality control
 Lowered threshold (~3.5MeV (kin.))
 Large statistics with lower backgrounds.
◦ New electronics
 Better timing determination
 Better MC model of trigger efficiency.
SK-IV Analysis improvement
◦ Introduce multiple scattering goodness(MSG)
 Although the 214Bi decay-electrons (majority of low
energy BG) fluctuate up above 5.0 MeV, they truly
have energy <3.3 MeV and should have more
multiple scattering than true 5.0 MeV electrons, and
therefore a lower MSG
◦ Reduced systematic error
 1.7% for flux
Hiroyuki Sekiya
cf. SK-I: 3.2% SK-III: 2.1%
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
5
Lowered background
Solar angular distribution
3.5~4.0MeV(kin.)
event/day/kton
Event rates
4.0-4.5MeV(kin.)
SK-III
SK-III
SK-IV
Stable low
background level
SK-IV
Clear Solar peak ~7.5σ level
3.5MeV threshold is achieved!
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
6
Solar angle distributions
with MSG in low energy
3.5-4.0MeV
0.45<MSG
MSG < 0.35
0.35<MSG<0.45
4.0-4.5MeV
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
7
SK-IV energy spectrum
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
8
SK-I,II,III,IV
Statistically combined spectrum
Distortion due to E dependence of
1)Oscillation survival probability, 2) dsm/dse ,3) Systematic uncertainties
sin2θ13=0.025
sin2θ12=0.304 , Δm2=7.45∙10-5eV2
Solar global+ KamLAND best value
sin2θ12=0.314 , Δm2=4.84∙10-5eV2
Solar global best fit value
Exponential fit
for testing “upturn”
Flat probability fit
f8B=5.25×106/(cm2∙sec)
fhep=7.88×103/(cm2∙sec)
“upturn” shape is favored ~1s, “flat” is disfavored ~1s
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
9
Comparison with others
SNO
KamLAND
Super-K
BOREXINO
Super-K spectrum is the most precise!
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
10
SK-I+II+III+IV
Day/Night Flux

Zenith angle distribution
sin2θ12=0.314 , Δm2=4.8∙10-5eV2
Solar global best fit value
sin2θ12=0.304 , Δm2=7.41∙10-5eV2
Solar global+ KamLAND best value
qz
cosqz = 1
L~15㎞
cosqz= -1,
L~13000㎞
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
11
Day-Night Asymmetry
SK-I+II+III+IV energy distribution
Asymmetry
SK-I -2.0±1.7±1.0 %
SK-II -4.3±3.8±1.0 %
SK-III -4.3±2.7±0.7 %
SK-IV -3.4±1.8±0.6 %
Comb -3.2±1.1±0.5 %
ined (2.7 σ from zero)
sin2θ12=0.314
Δm212=4.84x10-5eV2
First indication of
Earth matter effect!
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
12
Dependence of Asymmetry on
Dm221
KamLAND
Solar global
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
13
ne
nt
nm
Neutrino oscillation analysis
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
14
Allowed oscillation parameter
region from only SK

Dm212 ,q12
Blue: day/night only 2s region
Green: day/night
+spectrum 2s region
Red: Solar global+KamLAND
SK provides
most precise
Dm212
among solar
measurements
Hiroyuki Sekiya
f8B free fit
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
15
(Dm212 ,q12) from all solar data
Green: Solar global
dashed only SK+SNO
Blue: KamLAND
Red: Solar global+KamLAND
Combined
Solar
Data
Hiroyuki Sekiya
KamLAND
f8B=(5.25±0.20)
x 106/(cm2∙sec)
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
16
q13 Analysis w/ Solar+KamLAND
Solar+KamLAND
Best fit
+0.017
sin2θ13=0.031 -0.015
non-zero
significance
2s
3σ
Combined
KamLAND
Solar
2σ Data
1σ
Consistent with
reactor experiments
(0.0242±0.0026)
Daya Bay/Reno
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
17
Conclusion

Solar neutrino measurement in Super-K keeps
improving.
◦ lower threshold, lower BG, smaller errors, and
larger statistics

“1 s significance” spectrum distortion.

Asymmetry in day/night flux! @2.7σ,
◦ Confirmation of Earth matter effect on Solar neutrino!

Neutrino oscillation parameters are updated from
solar + KamLAND global fit;
◦ Δm212=7.45x10-5eV2, sin2θ12=0.304+0.013-0.013,
sin2θ13=0.031+0.017-0.015
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
18
Extra slides
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
19
Solar neutrinos observation
Neutrino-electron elastic scattering
n + e- → n + e-
• Solar direction sensitive
• Realtime measurements
•Energy spectrum
•day/night flux differences
•Seasonal variation
ne
Nuclear fusion reaction
deep inside the Sun
4p➔2He+2e++2νe
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
20
Solar Neutrinos
Pee
p+p➝d+e++νe
(99.77%)
p+e-+p➝d+νe
(0.23%)
all solar
BOREXINO
pp
d+p➝3He+γ
BOREXINO
pep
MSW (solar&KL)
MSW (solar)
SK & SNO
3Ηe+α➝7Be+γ 15.08%
3Ηe+3Ηe➝α+2p 84.92%
3He+p➝α+e++ν
e
7Be+e-➝7Li+ν 99.9%
e
7Be+p➝8B+γ 0.1%
Cl
8B
7Be
BOREXINO
Hep
8B+➝8Be*+e++ν
e
7Li+p➝α+α; 8Be*➝α+α
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
10
-3
10
-5
10
-6
10
-7
15
2
-5
-4
Dm in 10 eV
10
2
2s
2
Dm in eV
2
contour (flux free)
10
-8
10
-9
10
DN (flux free)
DN+Spec
Solar+KamLAN
D
5
0.0
10
0.1
0.2
0.3
0.4
sin
-4
10
-3
2
0.5
(q )
12
10
-2
10
-1
1
10
10
2
tan (q )
12
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
2
MSG



Hiroyuki Sekiya
For each PMT hit pair, the
vectors to the Chrenkov
ring cross points are the
direction candidates
MSG = vector sum of the
candidates/ scalar sum of
the candidates
MSG of multiple scattering
events should be small
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
23
Super-K water transparency
@ Cherenkov light wavelength
Measured by decay e-e+ from cosmic m-m+
SK-III
SK-IV
Started automatic
temperature control
anti-correlated with
Supply water temperature
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
24
Convection suppression in SK

Very precisely temperature-controlled
(±0.01oC) water is supplied to the bottom.
Return to
Water system
3.5MeV-4.5MeV
Event distribution
Temperature gradation in Z
The difference is only 0.2 oC
Purified
Water supply
r2
Hiroyuki Sekiya
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil
25
Current SK situation

Stagnation and top-bottom asymmetry.
Bacteria
in low flow rate region
OD top
ID,OD top
OD bottom
ID bottom
12t/h
36t/h
60t/h
Ver.14May 2012
Hiroyuki Sekiya
Emanated (from PMT/
FRP) and accumulated
Radon
12t/h
ICRC2013 Jul. 8 2013 @Rio de Janeiro, Brazil