Class Plan • • • • • 1-1.Graph グラフ 1-2.Graph Search グラフ探索 + some graph properties 1-3.Network Flow ネットワーク・フロー 1-4.Algorithms&Complexity アルゴリズムと計算量 • 2-1.Minimum Spanning Tree 最小木 ( + data structures and sorting データ構造,整列) • 2-2.Matroid マトロイド 3-0. Shortest path 最短路 • 3-1. Maximum Flow 最大流 • 3-2. Minimum Cost Flow 最小費用流 • ?4-1. Approximation algorithm 近似解法 • ?4-2. Heuristics ヒューリスティック Network Flows classical , traditional (?) • maximum flow • minimum cost flow Variants in flows • generalized flow • multicommodity flow • dynamic flow • Problem Formulation • Optimality condition • (Algorithm) Maximum Flow Problem (最大流問題) Given : directed graph G=(V,A) total out flow from s Find : which satisfies • flow bound constraints : (容量制約) and • mass balance constraints : (流量保存制約) = v • feasible flow(可能流) : a flow satisfying the above two constraints • maximum flow(最大流) : a feasible flow maximizing Example instance capacity 3 4 5 s 2 3 入口 4 t 出口 4 3 2 Are the following flows feasible/maximum ? 3 1) 4 1 2 s 0 1 3 2) 2 1 s 1 4 4 3 t 4) 3 5) 4 4 1 s 2 1 3 4 2 2 1 t 3 4 2 2 1 t 3 3 3 s 1 s 2 3 t 4 4 t 2 3 4 4 1 3 2 3 3) For evaluate a bottleneck of flow value … • s-t cut : • capacity of an s-t cut 3 3 4 5 3 s 2 4 t 3 4 4 5 3 s 2 2 total out flow from s : v≠s t 3 4 2 4 Feasible flow and s-t cut total out flow from s : Total out flow ∂φ(s) ≦ capacity of δ+(X) Maximum-flow Minimum-cut Theorem (Corollary 4.2) (s-t cut with minimum capacity) Ford-Fulkerson(1956) Augmenting path method(偽) step0: step1: instance Augmenting path capacity s 2 2 2 3 1 ε step2: 4 1 3 ε t 3 flow: s 0 0 0 s 0 0 0 0 2 0 0 s 0 2 0 0 0 2 1 0 2 0 0 t s 0 0 0 2 0 2 0 2 1 3 t 0 ? 1 t 2 t 0 There is no s-t directed path. 3 caps s 0 2 s 0 +1 2 2-1 1 0 3 -1 0 1 +1 t 2 2 0 1 1 2 1 2 ☆ residual network G (V, A ),u 1 A AF AB 2 2 2 1 1 1 2 2 1 arcs represent the possibility of pushing flow back on arcs 4 1 2 1 2 1 3 t t 3 AF {a A | (a) u(a)}, AB {a r | (a) 0} a r :reverse arc of a s 3 t s 1 3 1 2 2 4 2 u(a) (a) (a AF ) u (a) r B (a ) (a A ) 1 2 3 t Augmenting path method (本物) step0: step1: construct a residual network step2: Find an s-t directed path P in G (V, A ) If there is no such a path … step3: compute ε and update flow along P Go to step1. s 0 2 2 2 0 s 2 s 0 1 1 t 3 1 12 s 1 3 2 21 1 t 11 1 2 4 2 2 1 3 1 3 3 1 2 t 3 3 1 2 2 caps 1 1 4 2 2 1 2 ← augmenting path 21 1 3 12 t no augmenting path t When no augmenting path exists … : feasible flow There is no s-t directed path (augmenting path ) in G (V, A ) s s t t X X : set of vertices reachable from s → s-t cut total out flow from s “Maximum “ Optimality condition Theorem4.1 (Augmenting path theorem) A feasible flow φ is maximum ⇔ there is no augmenting path in G (V, A ) ⇒) If there is an augmenting path in G (V, A ) ….. ) proved ⇒ Maximum-flow Minimum-cut Theorem (s-t cut with minimum capacity) Ford-Fulkerson(1956) Max … min… duality Max flow problem Min cut problem Subject to ◆Show the dual problem ◆Show the complementary slackness condition Review of LP (dual problem) Example: Maximize 4x1+x2+3x3 Subject to x1- x2- x3= 1 2x1+x2+2x3≦13 x1, x2, x3≧0 A (quick) estimate of the optimal value (upper bound) Since x1, x2, x3 are nonnegative, Obj func. = 4x1+x2+3x3 ≦ 4x1+2x2+4x3≦26 2nd constraint ×2 Obj func. = 4x1+x2+3x3 ≦ 5x1+x2+3x3≦27 2nd constraint ×2 + 1st constraint Review of LP (dual problem) Example: Maximize 4x1+x2+3x3 Subject to x1- x2- x3= 1 2x1+x2+2x3≦13 x1, x2, x3≧0 Linear combination 1st constraint ×y1 + 2nd constraint ×y2 (y1+2y2)x1+ (-y1+y2)x2 +(-y1+2y2)x3 ≦ y1+13y2 If y1+2y2 ≧ 4 -y1+y2 ≧1 -y1+2y2 ≧3 We need y2 ≧0 coefficient of each xi is at least as big as the corresponding coefficient in obj. function. then obj. function ≦ y1+13y2 Review of LP (dual problem) dual primal m minimize bi yi n maximize c j x j i1 m j1 n subject to aij x j bi (i 1,..., ) j1 n aij x j bi subject t o aij yi c j ( j 1,...,n) i1 yi 0 (i 1,...,m) (i 1,...,m) j1 x j 0 ( j 1,...,n) The dual of the dual problem is always the primal problem m n m m c j x j aij yi x j aij x j yi bi yi j1 j1i1 i1j1 i1 n n Review of LP (duality theorem) x* : primal opt. sol ⇒ There exists s.t. y* : dual opt. sol n m c j x * j bi y *i j1 i1 Review of LP (complementary slackness) x* y* : primal feasible sol : dual feasible sol x* y * : opt. solutions m aij y *i c j or x * j 0 ( j 1,...n) i1 n a x * b or y * 0 (i 1,...m) i i ij j j1 (proof) Form m n m m c j x j aij yi x j aij x j yi bi yi j1 j1i1 i1j1 i1 n n Augmenting path method (complexity) Analyze the worst case time complexity for the augmenting path method step0: step1: construct a residual network step2: Find an augmenting path P inG (V, A ) If there is no such a path, stop. step3: compute ε and update flow Go to step1. P along Instance 1 capacity M M 1 s t M-1 1 M M s residual network M M 1 1 M-1 M-1 1 M 1 s 1 1 M-1 t M M 1 s t 1 M M-1 Number of iterations : ? M-1 t Instance 2 M 1 3 1 r M 5 1 ( 1), 2 M4 M r 1 s t r k r k1 r k1 r k r k1 M M 2 M 4 P1=(s,2,1,3,4,t) P2=(s,1,2,4,3,t) P3=(s,3,1,2,4,t) ◆Find maximum flow ◆If the algorithm chooses augmenting path as P1, P2, P1, P3, P1, P2, P1, P3, ,,, how many iterations the algorithm performs? Rules for selecting augmenting paths Maximum capacity augmenting path … Find an augmenting path maximizing αε •Max capacity augmenting path algo. •Capacity scaling algo. •MA ordering algo. Minimum length augmenting path … Find an augmenting path with least edges •Min length augmenting path algo. •Dinitz’s blocking flow algo. Max capacity augmenting path algo. step0: step1: construct a residual network step2: Find an augmenting path P in G (V, A ) If there is no such a path, stop. step3: compute ε and update flow Go to step1. P along An s-t directed path maximize min{uφ(a)|a∈A(P)} Max capacity augmenting path algo.(complexity) ※ integer capacity * : : ': Opt. flow A flow Flow obtained by updating along a max cap. aug. path (1 1 )( * (s) (s)) ( * (s) '(s)) m 1 m 1 1 m 2 The number of iteration O(m log(nU)) × maxmin type shortest path U=max{u(a)|a∈A} Capacity scaling algorithm ※ integer capacity Bit scaling u(a) u (a) Capacity of kth scaling phase k 2 K k K logU 1 φ ←2 φ kth scaling phase find a maximum fow φw.r.t uk s 2 5 1 4 5 3 2 3 3 find a maximum fow φw.r.t uk+1 s 010 5 t (k+1)th scaling phase 101 101 011 001 010 011 100 011 K=3 (log25=2.32…) 101 t Capacity scaling algorithm s 010 u1 s 0 101 101 011 001 010 011 100 011 1 1 t s 0 0 0 1 0 1 1 0 0 0 0 10 10 0 s 01 00 10 01 01 10 2 ×2 1 u2 01 t 0 Max flow 0 uk(a)=2uk-1(a) or 2uk-1(a)+1 101 t 01 2 0 0 0 2 0 1 0 0 0 t 0 Max flow t u3 010 101 101 011 001 010 011 100 011 101 t Capacity scaling algorithm(complexity) Step0: φ:=0, K logU 1 k:=1 Step1: [k scaling phase] find a maximum flow φ with respect to uk If k=K, then stop. Else k:=k+1, φ:=2φ, Step2: and go to step 1. ×2 Max flow 1 0 2 1 0 0 0 0 0 0 0 0 0 0 t uk(a)=2uk-1(a) or 2uk-1(a)+1 2 2 0 1 0 u(a) uk (a) K k 2 0 Max flow t Min cut value in the auxiliary network: ≦m (the number of cut edges) Minimum length augmenting path Other algorithms Push-relabel algorithm flow bound constraints No augmenting path Network simplex algorithm preflow mass balance constraints Max flow on planar graph s-t planar graph … the graph added the arc (t, s) is still planar capacity s 2 4 2 2 1 3 3 1 3 s-t cut = s*-t* path min cut = shortest path t Class Plan • • • • • 1-1.Graph グラフ 1-2.Graph Search グラフ探索 + some graph properties 1-3.Network Flow ネットワーク・フロー 1-4.Algorithms&Complexity アルゴリズムと計算量 • 2-1.Minimum Spanning Tree 最小木 ( + data structures and sorting データ構造,整列) • 2-2.Matroid マトロイド • 3-1. Maximum Flow 最大流 • 3-2. Minimum Cost Flow 最小費用流 • ?4-1. Approximation algorithm 近似解法 • ?4-2. Heuristics ヒューリスティック minimum circulation problem (最小費用循環流問題) Given: directed graph G=(V,A) capacity u: A → R+ cost c: A → R Find : flow :A → R+ minimizing total cost which satisfies ・flow bound constraints and ・mass balance constraints • feasible flow • minimum cost flow Example instance (cap,cost) (3,-1) (4,3) (3,0) (2,2) (1,-1) (1,-3) (2,2) (2,1) (4,2) 0 3 0 0 0 0 2 1 0 2 0 0 1 1 0 0 2 1 0 2 total cost = 0 total cost = 12 0 1 1 0 0 1 0 total cost = -2 residual network w.r.t. a flow ☆ residual network G (V, A ),u A AF AB AF {a A | (a) u(a)}, AB {a r | (a) 0} a r :reverse arc of a arcs represent the possibility of pushing flow back on arcs u(a) (a) (a AF ) u (a) r B (a ) (a A ) c(a) (a AF ) c(a) r B c(a ) (a A ) optimality condition (negative cycle…) Let be a feasible flow The following statements are equivalent : MCF-(a) : is minimum cost flow MCF-(b) : the residual network negative-cost cycles directed cycle C with MCF-(c) : There exists π:V → R such that holds for every does not have any (a) ⇒(b) If the residual network has a negative cost cycle, … (b) ⇒(a) : a flow satisfying (b) : optimal flow : feasible flow in can be decomposed into cycles in ⇒ is optimal negative cycle canceling algorithm step0 : =0 step1 : construct the residual network Shortest path algorithm step2 : Find a negative-cost cycle C in (cap,cost) If there is no such a cycle, stop. step3 : compute (3,-1) and update flow along C. (2,2) Go to step1. (1,-3) 0 1 0 0 0 0 (2,2) 0 1 1 0 (4,2) 0 0 0 0 residual network 0 optimal (2,-1) (3,-1) (1,1) (4,3) (3,0) (3,0) (2,2) (1,-3) (2,2) (4,2) (1,2) (1,-2) (1,-1) (2,1) (4,3) (1,3) (2,2) (1,-1) (2,1) (4,2) (1,-1) (2,1) 0 0 0 (4,3) (3,0) LP form Minimize Subject to ◆Show the dual problem ◆Show the complementary slackness condition Compare to optimality conditions Optimality condition (reduced cost) c p (a) c(a) p( a) p(a) potential p Kilter diagram c p (a) 0 (a) 0 p( a) p( a) c p (a) 0 (a) u(a) c p (a) 0 0 (a) u(a) u(a) (a) Modified network w.r.t. p G=(V, A) Modified capacity 0 u p (a) u(a) u(a) 0 (c p (a) 0) (c p (a) 0) l p (a) 0 u(a) (c p (a) 0) (c p (a) 0) (c p (a) 0) (c p (a) 0) Optimality condition (positive cut) A potential p is dual optimal if and only if in the modified network w.r.t. p any cut δ(X) satisfies u p (a) l p (a) a ( X ) Positive cut : a cut with a (X ) u p (a) l p (a) a ( X ) a (X ) Positive cut canceling algorithm step0 : p: any potential Max flow algorithm step1 : construct the modified network step2 : Find a positive cut in modified network (cap,cost) If there is no such a cut, stop. step3 : compute m in c (a) | a (a),c (a) 0 , p p m in m in c p (a) | a (a),c p (a) 0 (3,0) p(v) (v X) and update potential p(v) 1 p(v) Go to step1. (3,-1) (4,3) (2,2) (1,-3) (v X) (2,2) (2,1) 0 0 0 (0, 0)3 (0, 0)3 (0, 0)2 (1, 1)-1 (1, 1)-3 0 0 (0, 0)1 (0, 0)2 0 (0, 0)2 modified network (Ip,up)cp 0 (4,2) (0, 3)0 1 (0, 3)0 (3, 3)-1 0 (0, 3)0 (1,-1) (0, 0)2 (0, 1)0 (1, 1)-4 1 0 (0, 3)0 (0, 2)0 (0, 0)2 0 (0, 0)2 0 (0, 3)0 1 0 (0, 0)3 (0, 2)0 (0, 1)0 (1, 1)-2 1 (0, 2)0 (0, 2)0 2 (0, 0)4 0 Other algorithms Primal dual algorithm Network simplex algorithm +Scaling technique
© Copyright 2025 ExpyDoc