Lattice Calculation for Forward LIBOR Model Tadashi Uratani Hosei University [email protected] and Makoto Utsunomiya Bank of Tokyo-Mitsubishi 99/08/29 Jafee 99 Outline • Interest rate sensitive security (e.g. Cap) • Definitions: Bond Price, LIBOR • Forward LIBOR Model – Martingale, No Arbitrage, and – Backward, Forward Induction Method • Lattice Calculation • Transitional Probability among Measures • Valuation of Knockout Cap 99/08/29 Jafee 99 Interest rate derivatives E.g. Cap rate Short term interest(LIBOR) difference difference premium Exercise rate Company Bank date 99/08/29 Jafee 99 LIBOR London Interbank Offer Rate Typical short-term interest rate in international capital market 3 month LIBOR 6 month LIBOR 3 month Borrowing date 99/08/29 Returning date Jafee 99 Forward LIBOR and Discount Bond Price n t Tn n1 Tn1 Tn2 3month LIBOR : = 3/12 = 0.25 Ln (t ) : Libor starting fromTn to Tn1 Forward LIBOR Bn (t ) : Bond of Maturity Tn at tim et 99/08/29 Jafee 99 Forward LIBOR and Bond Price t Tn Tn 1 1 1 (1 n Ln (t )) Bn (t ) Bn 1 (t ) n 1 Bn 1 (t ) Bn ( t ) (t ) Tn ( t )1 t Tn ( t ) i n ( t ) 1 i Li (t ) 99/08/29 Jafee 99 Forward LIBOR Model Bond process dBn (t ) (t , Tn )dt n (t )dW (t ) Bn (t ) Ito’s Lemma dLn (t ) n (t )dt n (t )dW (t ) Valuation of derivatives by Forward LIBOR 99/08/29 Jafee 99 Change of Probability Measure dX (t ) μX (t )dt σX (t )dW (t ) X (t ) W (t ) : SBM on (Ω, t ,Ρ) Girsanov Theorem t dP X 1 t 2 exp X ( s) ( s) ds x ( s) ( s) dW ( s) 0 dP 2 0 t WX (t ) W (t ) ( ( s) X ( s))ds 0 : SBM on (, t , X ) 99/08/29 Jafee 99 Martingale dX (t ) X (t ) X (t )dt X (t )dW (t ) dC(t ) C (t )dt C (t )dW (t ) C (t ) 0t T No Arbitrage Condition C (t ) X (t ) (t ) C (t ) X (t ) 99/08/29 Market value of risk Jafee 99 Pricing by Martingale C (t ) X (t ) Martingale under C (t ) X C (T ) t X (t ) X (T ) 99/08/29 X t T Jafee 99 Risk Neutral Measure Bn ( t ) (t ) n ( t ) 1 B( t ) (1 n Ln (Tn )) B1 (t ) n 1 let X (t ) B(t ) C( t ) B C(T ) t tT B( t ) B(T ) P B i i (t ) n (t ) dLn (t ) dt n (t )dWB (t ) ( Forward.Induction) i n ( t ) 1 i Li (t ) n 99/08/29 Jafee 99 Risk Adjusted Measure let X (t ) Bn1 (t ) C( t ) n 1 C(T) t tT Bn1 ( t ) Bn1 (T) t Tm Tn Martigale underP n1 t Ln (t ) Ln (T ) Tn1 n 1 dLn (t ) n (t )dWn1 (t ) i i (t ) n (t ) dLm (t ) dt m (t )dWn1 (t ) ( Backward.Induction) i m 1 1 i Li (t ) n 99/08/29 ( Tm Tn ) Jafee 99 Valuation of cap Generation :F. LIBOR X ( t ) B( t ) Choice :Meas. Backward 99/08/29 dLn (t ) n (t )dWn1(t ) dLn1(t ) n1(t )dWn2 (t ) dLN (t ) N (t )dWN 1(t ) Jafee 99 Lattice martingale X (t ) Bn1 (t ) Forward Lattice Calculation dLn (t ) n (t )dWn1(t ) Martingale Measures dLn1(t ) n1(t )dWn2 (t ) dLN (t ) N (t )dWN 1(t ) LN1(t ) LN (t) L ( t ) n 1 L (t ) n 99/08/29 Jafee 99 Transition Probability g ( L (T ) t k i qk ( Li (t ), Li (T ))g ( L)dL k q :transition probability of measureP 99/08/29 Jafee 99 k Relation of Transition Probabilities g ( Li (T ) k t k 1 t 1 k Lk (T ) g ( Li (T ) 1 L (t ) k k k 1 P and P q k 1 99/08/29 k 1 k Lk (t ) ( Li (t ), Li (T )) qk ( Li (t ), Li (T )) 1 k Lk (T ) Jafee 99 One measure TN 1 TN Tn1 Tn P N 1 and P n1 q N 1 1 k Lk (T ) ( Li (t ), Li (T )) qn1 ( Li (t ), Li (T )) k n 1 1 L (t ) k k 99/08/29 N Jafee 99 Knockout Cap rate LIBOR Cap contract is knockout K Ko Year 99/08/29 Jafee 99 0 T1 Tn2 Tn1 Tn Tn1 C (Tn ) n max Ln (Tn ) K ,0 I def I I min L1 ( T1 ), L2 ( T2 ),, Ln1 ( Tn1 ) Ko 99/08/29 Jafee 99 Binominal tree under each measure Ln Ko Calculate the knocknout Ln1 Ko Unify one measure Valuation of derivative LN Ko 99/08/29 Jafee 99 Knockout Cap Underlying security:3 month LIBOR maturity 3 years knockout cap i i (t ) n (t ) dLn (t ) dt n (t )dWB (t ) ( forward.Induction) i n ( t ) 1 i Li (t ) n i i (t ) n (t ) dLm (t ) dt m (t )dWn1 (t ) ( Backward.Induction) i m 1 1 i Li (t ) n dLn (t ) n (t )dZn1 (t ) ( Tm Tn ) n (t ) Ln (t ) 99/08/29 Jafee 99 Knockout Cap 14 誤差 (%×10) 12 Error fd λ=0.2 前進法 La λ=0.2 格子法 λ=0.3 前進法 fd λ=0.3 格子法 La λ=0.4 前進法 fd λ=0.4 格子法 fd λ=0.5 前進法 La λ=0.5 格子法 10 8 6 La 4 2 0 K=0.02 K=0.03 ノックアウト・レート Knockout rate 99/08/29 Jafee 99 Why lambda affect? Lattice generation 99/08/29 Ko LN Large λ Ko Ln1 n (t ) Ln (t ) Ln dLn (t ) n (t )dZn1 (t ) Jafee 99 Ko End 99/08/29 Jafee 99 i i (t ) n (t ) dLn (t ) dt n (t )dWB (t ) (前進法) i n ( t ) 1 i Li (t ) n Tn Tn2 Tn3 t Tn(t ) Tn Tn(t ) L1 L2 L3 99/08/29 Ln( t ) Ln3 Ln2 Ln1 Jafee 99 T0 T1 i i (t ) n (t ) dLm (t ) dt m (t )dWn1 (t ) (後退法) i m1 1 i Li (t ) n Tn Tn2 Tn3 t Tm Tn t T2 L1 L2 L3 99/08/29 Lm Ln3 Ln2 Ln1 Jafee 99 T0 T1 Knockout Cap 前進法、後退法 • 単純モンテカルロ法 • 試行回数10000回 • 時点分割10 多重格子法 • 時点分割10 3ヶ月LIBORを対象とした3年満期の0時点における価格 K o 0.005,0.01,0.015 λ 0.2,0.3,0.4,0.5 K 0.02 初期イールド 0.03一定( Ln (0) 0.03) 99/08/29 Jafee 99 99/08/29 Jafee 99 Conclusion • 異なった測度による推移確率関数を関係付け ることによりいくつかの金利派生証券を評価 • 推移確率関数を格子法に利用 • Knockout Capletにおいてλが大きいとき他の方 法に比べ誤差が大きい – 各格子の作成方法を検討 – 推移確率関数の検討 • 他の期間同士のForward LIBORの推移確率 の導入し、他の派生証券を評価 99/08/29 Jafee 99
© Copyright 2024 ExpyDoc