ABJM行列模型の最近の進展 森山翔文(名古屋大学KMI) [arXiv:1106.4631] with H.Fuji and S.Hirano [arXiv:1207.4283, 1211.1251, 1301.5184] with Y.Hatsuda and K.Okuyama グラフで見るM2 森山翔文(名古屋大学KMI) [arXiv:1106.4631] with H.Fuji and S.Hirano [arXiv:1207.4283, 1211.1251, 1301.5184] with Y.Hatsuda and K.Okuyama 「M2、100人に聞きました」 修士論文が出来た時期? 結婚の予定? 10月 博士課程 11月 ポスドク 12月 1月 2月 まだ それ以降 異性に興 味ない "M2の分配関数"のグラフ 0 1 2 3 質問 二歳児: 「なんでにょろにょろ?」 物理学者: 「縦軸は?横軸は?」 Contents 1. 2. 3. 4. 5. Motivation Fermi Gas Exact Results NonPerturbative Effects As Various Instantons (Skipped) 6. Further Directions Contents 1. 2. 3. 4. 5. Motivation Fermi Gas Exact Results NonPerturbative Effects As Various Instantons (Skipped) 6. Further Directions Previously in Fuji-Hirano-M Perturbative Terms of ABJM Matrix Model N1=N2=N Z(N) = in 't Hooft Expansion Sum Up To ・・・ Previously in Fuji-Hirano-M Z(N) = (Up To Constant Maps & Instanton Effects) cf: [Marino-Putrov, Honda et al] • Airy Function Ai(N) = (2πi)-1∫dμ exp[μ3/3 - μN] • Renormalization of 't Hooft coupling λ = N/k λren = λ - 1/24 + 1/(24k2) Previous Method • • • • (Analytic Continuation N2 → - N2) Chern-Simons Theory on Lens Space S3/Z2 (String Completion) Open Top A-model on T*(S3/Z2) (Large N Duality) Closed Top A on Hirzebruch Surface F0 = P1 x P1 (Mirror Symmetry) Closed Top B on Spectral Curve u v = H( x , y ) Holomorphic Anomaly Equation!! Motivation① M2-brane ABJ(M) N=6 Chern-Simons Theory (N1,N2,k) ⇕ Min(N1,N2) M2 with |N1-N2| Fractional M2 on C4/Zk Special Case No Fractional Branes: N1=N2=N Flat Space: k=1 IIA (C4/Zk ⇒ CP3 x R x S1): k=∞ with N/k Fixed Motivation① M2-brane Partition Function of M2 WorldVolume Theory N x M2 Z = Airy(N) ≈ exp[-N3/2] DOF N3/2 Reproduced [Drukker-Marino-Putrov] Also Non-Perturbative Corrections Motivation① M2-brane [Drukker-Marino-Putrov] Non-Perturbative Corrections • 't Hooft Expansion in Matrix Model Exp[-2π√2N/k] Identified as String Wrapping CP1 in CP3 • Asymptotic Expansion-like Analysis Exp[-π√2Nk] Identified as D2-brane Wrapping RP3 in CP3 Motivation② From Gaussian To ABJM ABJM CS Super CS q-deform Superalg Gauss Dissatisfaction① M-theory from 't Hooft Expansion F(N) = log[Z(N)] F(N) = N-2[F0pert(λ) + e-√λ + e-2√λ + ...] + N0[F1pert(λ) + e-√λ + e-2√λ + ...] + N2[F2pert(λ) + e-√λ + e-2√λ + ...] + N3[F3pert(λ) + e-√λ + e-2√λ + ...] N + ...... M-theory Regime k: Fixed k 't Hooft Regime λ=N/k: Fixed but Large Dissatisfaction② • Instanton Effects? - Worldsheet Instantons? - Membrane Instantons? - Bound States? Message from Airy① Hidden Structure? • String Theory (Dual Resonance Model) Veneziano Amplitude ⇒ String Conformal Symmetry [Virasoro, Nambu] • Membrane Theory Free Energy as Airy Function ⇒ Hidden Structure for Membrane? Message from Airy② CS? Cubic? Membrane WorldVolume Theory [Aharony-Bergman-Jafferis-Maldacena] ZM(N) ~ ∫DA Exp S11SG MTheory ZCS(N) = ∫DA Exp ∫A dA- A∧A∧A Chern-Simons Theory Wave Function of The Universe [Ooguri-Verlinde-Vafa] All Genus Partition Function [Fuji-Hirano-M] Airy Function Ai(N) = (2πi)-1∫dμ Exp[μ3/3 - μN] Message from Airy③ Statistical Mechanics Ai(N) = (2πi)-1∫dμ exp[μ3/3 - μN] Grand Potential in Statistical Mechanics? eJ(μ) = 1 + ∑N=1∞ Z(N) e-μN Z(N) = (2πi)-1∫dμ exp[J(μ) - μN] What is the Statistical Mechanical System? Grand Potential, Simpler!? Contents 1. 2. 3. 4. 5. Motivation Fermi Gas Exact Results NonPerturbative Effects As Various Instantons (Skipped) 6. Further Directions Fermi Gas After Some Calculation, ... [Marino-Putrov] • Non-Interacting Fermi Gas Z(N) = (N!)-1 ∑σ (-1)σ ∫ ∏i dqi 〈qi| ρ |qσ(i)〉 Density Matrix ρ = e-H ρ = [2 cosh q/2]-1/2 [2 cosh p/2]-1 [2 cosh q/2]-1/2 • Statistical Mechanics Approach N3/2 & Airy Easily(!) Reproduced Besides, Large N with k Fixed Statistical Mechanics Sum Over Permutations σ ∊ SN (-1)σ = (-1)#{Intersections} 12345 σ 12345 (1→2→3→) Tr ρ3 (4→5→) Tr ρ2 Statistical Mechanics Sum Over Permutations 12345 σ ∊ SN τ ⇓ Sum Over Conjugacy Classes σ~ σ' ⇔ ∃τ σ' = τ-1 σ τ Characterized by Partition m1 1 m2 2 m3 3 ・・・ σ τ -1 12345 (4→1→5→) (2→3→) (-1)σ' = (-1)σ : Independent Of Representative Statistical Mechanics Z(N) = (N!)-1 ∑σ (-1)σ ∫ ∏i dqi 〈qi|ρ|qσ(i)〉 ⇓ Z(N) = (N!)-1 ∑'{mj} (phase) x (combi) x ∏j(Tr ρj) • Sum ∑' : Sum under Constraint ∑j j mj = N mj • (combi) = N! / [∏j mj! j ] (j-1)mj • (phase) = ∏j (-1) (j-1)mj m m Z(N) = ∑'{mj} ∏j (-1) (Tr ρj) j / [mj! j j] mj A Check m N! = ∑'{mj} N! / [∏j mj! j j] ⇕ mj ∞ 1 = ∑'{mj} ∏j=1 1 / [mj! j ] To Lift Constraint, Generating Function mj ∞ N ∑N=0 ∑'{mj} ∏j=1 z / [mj! j ] mj ∞ ∞ j = ∏j=1 ∑mj=0 (z /j) / mj! = exp ∑j=1∞ zj /j ∞ = 1 / (1-z) Grand Canonical Partition Function • To Lift Constraint, Grand Partition Funcation Ξ(z) = exp J(z) = ∑N=0 ∞ Z(N) zN J(z) = - ∑j=1 ∞ Tr ρj (-z)j / j = Tr log (1 + z ρ) Ξ(z) = det (1 + z ρ) • Chemical Potential z = eμ • Back to Canonical Partition Function Z(N) = ∳ dz/(2πi) eJ(z)/ zN+1 Approximation • Thermodynamic Limit ρ(E) = dn(E)/dE J(μ) = ∫ dE ρ(E) log (1 + eμ-E) • Saddle Point Approximation exp F(N) = Z(N) ≈ ∫ dμ eJ(μ)-μN N = ∂J/∂μ ⇒ μ ≈ μ*(N) F(N) ≈ J(μ*) - μ*N Monomial Behavior • Thermodynamic Limit n ≈ Es ρ ≈ Es-1 J ≈ Lis+1(-eμ) ≈ μs+1 • Saddle Point Approximation N ≈ μs F ≈ μs+1 ≈ N(s+1)/s Application to Fermi Gas Fermi Gas p 2E log(2 cosh q/2) + log(2 cosh p/2) = E 2E q |q|+|p|= 2E n(E) = 8E2/2πℏ = (2/π2k) E2 s=2 N3/2 WKB Analysis • ℏ(=2πk) -Perturbation • Systematic Expansion in e-2μ ~ Exp[-π√2Nk] J(μ) = Jpert(μ) + Jnp(μ) Jpert(μ) = Ck μ3/3 + Bk μ + Ak Jnp(μ) = ∑l=1 ∞( α(l) μ2 + β(l) μ + γ(l) ) e-2lμ • Quadratic Prefactor (Linearity in "log[2coshq/2] ~ q") • (α(l), β(l), γ(l)) Determined in ℏ-Perturbation Contents 1. 2. 3. 4. 5. Motivation Fermi Gas Exact Results NonPerturbative Effects As Various Instantons (Skipped) 6. Further Directions World Records of Exact Values • [Hatsuda-M-Okuyama 2012/07] Nmax= 9 for • [Putrov-Yamazaki 2012/07] Nmax= 19 for • [Hatsuda-M-Okuyama 2012/11] Nmax= 44 for Nmax= 20 for Nmax= 18 for Nmax= 16 for Nmax= 14 for k=1 k=1 k=1 k=2 k=3 k=4 k=6 Sample (for k=1) Z(1) = 1/4 Z(2) = 1/16π Z(3) = (π-3)/26π Z(4) = (-π2+10)/210π2 Z(5) = (-9π2+20π+26)/212π2 Z(6) = (36π3-121π2+78)/21432π3 Z(7) = (-75π3+193π2+174π-126)/2163π3 Z(8) = (1053π4-2016π3-4148π2+876)/22132π4 Z(9) = (5517π4-13480π3-15348π2+8880π+4140)/22332π4 Method: Factorization [Tracy-Widom] ρ(q1,q2) = E(q1) E(q2) [M (q1) + M(q2)]-1 ⇓ ρn(q1,q2) = Σm (-1)m [ρmE](q1) [ρn-1-mE](q2) x [M(q1) - (-1)n M(q2)]-1 Method: Hankel Matrix [Hatsuda-M-Okuyama] • Density Matrix ρ: Isospectral to Hankel Matrix ρ≈ ρ0 0 ρ1 0 ρ2 0 0 ρ1 0 ρ2 0 ρ3 ρ1 0 ρ2 0 ρ3 0 0 ρ2 0 ρ3 0 ρ4 ρ2 0 ρ3 0 ρ4 0 0 ρ3 0 ρ4 0 ρ5 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ = ρ+ 0 0 ρ- • A Magic Formula For Hankel Matrix det (1+zρ-) / det (1-zρ+) = [(1-zρ+)-1E+]0 / [E+]0 Contents 1. 2. 3. 4. 5. Motivation Fermi Gas Exact Results NonPerturbative Effects As Various Instantons (Skipped) 6. Further Directions Strategy: Plot & Fit Grand Potential J(μ) = log[ 1 + ∑N=1Nmax Z(N) eμN ] J(μ) vs Jpert(μ) (J(μ)-Jpert(μ))/e-4μ/k vs α1μ2+β1μ+γ1 (J(μ)-Jpert(μ)-Jnp(1)(μ))/e-8μ/k vs α2μ2+β2μ+γ2 (J(μ)-Jpert(μ)-Jnp(1)(μ)-Jnp(2)(μ))/e-12μ/k vs α3μ2+β3μ+γ3 ・・・ k=1 (J(μ)-Jpert(μ))/e-4μ J(μ) (J(μ)-Jpert(μ)-Jnp(1)(μ)-Jnp(2)(μ))/e-12μ (J(μ)-Jpert(μ)-Jnp(1)(μ))/e-8μ k=2 (J(μ)-Jpert(μ))/e-2μ J(μ) (J(μ)-Jpert(μ)-Jnp(1)(μ)-Jnp(2)(μ))/e-6μ (J(μ)-Jpert(μ)-Jnp(1)(μ))/e-4μ k=3 (J(μ)-Jpert(μ))/e-4μ/3 J(μ) (J(μ)-Jpert(μ)-Jnp(1)(μ)-Jnp(2)(μ))/e-4μ (J(μ)-Jpert(μ)-Jnp(1)(μ))/e-8μ/3 k=6 (J(μ)-Jpert(μ))/e-2μ/3 J(μ) (J(μ)-Jpert(μ)-Jnp(1)(μ)-Jnp(2)(μ))/e-2μ (J(μ)-Jpert(μ)-Jnp(1)(μ))/e-4μ/3 k=4 (J(μ)-Jpert(μ))/e-μ J(μ) (J(μ)-Jpert(μ)-Jnp(1)(μ)-Jnp(2)(μ))/e-3μ (J(μ)-Jpert(μ)-Jnp(1)(μ))/e-2μ Oscillatory Behavior!! • Original Definition of Grand Potential eJ(μ) = 1 + ∑N=1∞ Z(N) e-μN Periodic in μ = μ + 2πi • But, No More in Jpert(μ) etc. To Remedy the 2πi-Periodicity • 2πi-Periodic Grand Potential exp[J(μ)] = ∑N=-∞∞ exp[Jnaive(μ+2πiN)] Jnaive(μ) = Jpert(μ) + Jnp(μ) J(μ) = Jnaive(μ) + Josc(μ) • Results: Josc(μ) = 2 Cos[Ck μ2 + Bk - 8/3k] e-8μ/k + ... No Oscillations in Partition Function Back to Canonical Partition Function Z(N) = ∳ dz/(2πi) eJ(z)/ zN+1 No Josc(μ) After Extending Integral Range Z(N) = ∫-πi dμ/(2πi) πi eJ(μ)-μN = ∫ ∞ dμ/(2πi) -∞ eJ naive (μ)-μN Short Discussions • General in All Models of Statistical Mechanics - 2πi Periodicity in Grand Potential - But Not in Its Perturbative Expansion • Newly Found? "グラフで見る大ポテンシャル" Results from Fitting Jk=1(μ) = [(4μ2+μ+1/4)/π2]e-4μ + [-(52μ2+μ/2+9/16)/(2π2)+2]e-8μ + [(736μ2-152μ/3+77/18)/(3π2)-32]e-12μ + ... Jk=2(μ) = [(4μ2+2μ+1)/π2]e-2μ + [-(52μ2+μ+9/4)/(2π2)+2]e-4μ + [(736μ2-304μ/3+154/9)/(3π2)-32]e-6μ + ... Jk=3(μ) = [4/3]e-4μ/3 + [-2]e-8μ/3 + [(4μ2+μ+1/4)/(3π2)+20/9]e-4μ + ... Jk=4(μ) = [1]e-μ + [-(4μ2+2μ+1)/(2π2)]e-2μ + [16/3]e-3μ + ... Jk=6(μ) = [4/3]e-2μ/3 + [-2]e-4μ/3 + [(4μ2+2μ+1)/(3π2)+20/9]e-2μ + ... (Josc(μ) Abbreviated) up to 7-instanton Contents 1. 2. 3. 4. 5. Motivation Fermi Gas Exact Results NonPerturbative Effects As Various Instantons (Skipped) 6. Further Directions Schematically Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ... Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ... Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]e-4μ + ... Jk=4(μ) = [#]e-μ + [#μ2+#μ+#]e-2μ + [#]e-3μ + ... ... Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ... WS(1) WS(2) WS(3) Worldsheet Instanton From Top String Implication from Topological Strings JkWS(μ) = ∑m=1∞ dk(m) e-4mμ/k Multi-Covering Structure dk(m) = ∑g ∑n|m (-1)m/n Ngn/n (2 sin[2πn/k])2g-2 Gopakumar-Vafa Invariant on F0=P1xP1 Ngn Match with Topological String? Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ... Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ... Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]e-4μ + ... Jk=4(μ) = [#]e-μ + [#μ2+#μ+#]e-2μ + [#]e-3μ + ... ... Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ... WS(1) WS(2) WS(3) Match with Topological String? Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ... Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ... Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]e-4μ + ... Jk=4(μ) = [#]e-μ + [#μ2+#μ+#]e-2μ + [#]e-3μ + ... ... Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ... WS(1) : Match WS(2) : Divergent WS(3) : Not-Match First Guess Membrane Instanton & Worldsheet Instanton, Same Origin in M-theory dk(m) e-4mμ/k = (divergence) + [#μ2+#μ+#] e-2lμ Around k = 2m/l Correctly Speaking, ... Cancellation of Divergences? Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ... Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ... -4μ + ... Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]eMB(2) Jk=4(μ) = [#]e-μ + [#μ2+#μ+#]e-2μ + [#]e-3μ + ... ... Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ... WS(1) WS(2) WS(3) MB(1) Cancellation of Divergence k=1 MB4 MB3 • Worldsheet m-Instanton -1 [sin 2πm/k] MB2 • Membrane l-Instanton [sin πlk/2]-1 k=2 k=3 k=4 k=5 k=6 WS1 WS2 WS3 WS4MB1 More Dynamical Figure k=1 MB4 MB3 • Worldsheet m-Instanton -1 [sin 2πm/k] MB2 • Membrane l-Instanton [sin πlk/2]-1 k=2 k=3 k=4 k=5 k=6 WS1 WS2 WS3 WS4MB1 1-Membrane Instanton • Vanishing in k=odd • Canceling Divergence • Matching the WKB data ak(1) = -4(π2k)-1 cos[πk/2] bk(1) = 2π -1 cot[πk/2] cos[πk/2] ck(1) = ... How About ? • (l, m) Bound State ? e- l x 2μ - m x 4μ/k Ex: e-3μ Effects in k=4 Sector From Both (0,3) & (1,1) But No Information on Bound States Yet. 2-Membrane Instanton Cancellation of Divergence in (2,0)+(0,2m+1) [Calvo-Marino] m k=3 k=1 l ak(2) = ... bk(2) = ... ck(2) = ... Bound States (1,m)? Cancellation of Divergence in (2,0)+(1,m)+(0,2m) k=4 m k=2 l (1,m) Bound States Cancellation of Divergence in (2,0)+(1,m)+(0,2m) Match with (1,1)+(0,3) in k=4 Sector, ... • (1,m) Bound States Jk(1,m)(μ) = ... = ak(1) dk(m) e-2μ-4mμ/k More Bound States Similarly, • (2,m) Bound States Jk(2,m)(μ) = (ak(2)+(ak(1))2/2) dk(m) e-4μ-4mμ/k Match with (2,2)+(0,5) in k=3, ... • (3,m) Bound States Jk(3,m)(μ) = (ak(3)+ak(2)ak(1)+(ak(1))3/6) dk(m) e-6μ-4mμ/k All Bound States • Finally Jk(l,m)(μ) = ∑ (ak(l1))n1/(n1)! ... (ak(lL))nL /(nL)! x dk(m) e-2lμ-4mμ/k • Sum Over n1 l1 + ... + nL lL = l • ∑(a)n/(n)! ⇒ Exp[a] ?? To Summarize Originally J(μ) = Jpert(μ) + JMB(μ) + JWS(μ) + Jbnd(μ) Jpert(μ) = #μ3 + #μ + # JMB(μ) = ∑l>0 JMB(l)(μ) = ∑l>0 (#μ2 + #μ + #) e-2lμ JWS(μ) = ∑m>0 JWS(m)(μ) = ∑m>0 # e-4mμ/k Jbnd(μ) = ∑l>0,m>0 J(l,m)(μ) Effective Chemical Potential μeff = μ + # ∑l ak(l) e-2lμ • Grand Potential J(μ) = Jpert(μeff) + J'MB(μeff) + JWS(μeff) J'MB(μeff) = ∑l>0 (#μeff + #) e-2lμeff • Bound States in Effective WS Instanton • Membrane Instanton in Linear Functions Contents 1. 2. 3. 4. 5. Motivation Fermi Gas Exact Results NonPerturbative Effects As Various Instantons (Skipped) 6. Further Directions Further Direction [Work in Progress] • Generality of Cancellation?? - More Examples Wilson Loops? ABJ Extensions? ... ... - General Matrix Model Terminology Thank You For Your Attention.
© Copyright 2024 ExpyDoc