Divided Range Genetic Algorithms in Multiobjective Optimization Problems Tomoyuki HIROYASU Mitsunori MIKI Sinya WATANBE Doshisha University Topics •Multi objective optimization problems •Genetic Algorithms •Parallel Processing Divided Range Genetic Algorithms (DRGAs) What is Optimization Problems ? Design variables X={x1, x2, …. , xn} Objective function F Constraints Gi(x)<0 ( i = 1, 2, … , k) Multi objective optimization problems Design variables X={x1, x2, …. , xn} Objective function F={f1(x), f2(x), … , fm(x)} Constraints Gi(x)<0 ( i = 1, 2, … , k) Pareto dominant C A F2 B F1 better Pareto Solutions Cost better Ranking 5 2 F2 3 1 1 1 F1 better Genetic Algorithms Evaluation Crossover Selection Mutation Multi point searching methods I=K+1 I=K I=1 I=0 F2 F1 better GAs in multi objective optimization •VEGA Schaffer (1985) •VEGA+Pareto optimum individuals Tamaki (1995) •Ranking Goldberg (1989) •MOGA Fonseca (1993) •Non Pareto optimum Elimination Kobayashi (1996) •Ranking + sharing Srinvas (1994) •Others Parallerization of Genetic Algorithms •Evaluation Micro-grained model •Population Coarse-grained model Island model Island 1 f2 (x) f2(x) f2 (x) Distributed Genetic Algorithm f 1(x) Island 2 f1(x) f 1(x) ・Cannot perform the efficient search ・Need a big population size in each island Divided Range Genetic Algorithms (DRGA) F2 F1 Divided Range Genetic Algorithms (DRGA) F2 F1 Genetic Algorithms in Multi objective optimization •Expression of genes Vector •Crossover Gravity crossover •Selection Rank 1 selection with sharing •Terminal condition When the movement of the Pareto frontier is very small Numerical examples Tamaki et al. (1995) Veldhuizen and Lamount (1999) Example 1 Objective functions f1 x1 x2 2 1 f2 x1 x2 1 2 Constraints 1 13 x1 x 2 0 6 2 5x1 x 2 30 0 x2 0 x1 0 1 15 x1 x2 0 2 2 Example 2 Objective functions f1 2x1 x2 f2 x 2 Constraints x x2 0 2 1 x2 1 0 x1 0 Example 3 Objective functions f1 2 x1 f2 x1 (1 x 2 ) 5 Constraints x1 1 0 4 x1 0 x2 1 0 2 x 2 0 Example 4 Objective functions f1 0.5(x1 x2 ) sin(x1 x2 ) 2 2 2 2 (3x1 2x2 4)2 (x1 x 2 1)2 f2 15 Constraints 8 27 1 x1 3 2 2 f3 2 1.1exp(x1 x 2 ) 2 x2 3 x1 x2 1 Distributed Genetic Algorithms Used parameters SGA DGA DRGA Cro ss o ver 1 .0 rate Mu tatio n 0 .0 rate Nu mb er o f 5 is lan ds Mig rati o n i nt erval 5 (So rt in terv al ) Mig rati o n 0 .1 rate Population size and the sharing range cas e Cas e 1 Cas e 2 Cas e 3 Cas e 7 Cas e 5 p op u latio ns hari ng ran ge s ize 50 25 10 0 50 20 0 100 50 0 250 1 0 00 500 Evaluation methods •Pareto optimum individuals •Error •Cover rate (smaller values arebetter ( E>0) (index of diversity, 0<C<1) •Number of function calls (smaller values are better) •Calculation time (smaller values are better) Results(example 1) Pareto optimum solutions DGA DRGA Results(example 1) Error 4.0 Error 3.0 2.0 Single 1.0 0.0 DGA DRGA 0 1 2 3 Cases 4 5 Number of function calls Results(example 1) Number of function calls 8.0E+04 6.0E+04 Simple 4.0E+04 DGA 2.0E+04 0.0E+00 DRGA 0 1 2 3 Cases 4 5 Results(example 1) Calculation time Calculation time [s] 150.0 100.0 Simple 50.0 DGA 0.0 DRGA 0 1 2 3 4 Cases 5 Results(example 2) Pareto optimum solutions DGA DRGA Results(example 2) Cover rate 1.0 Cover rate 0.8 0.5 Simple DGA DRGA 0.2 0.0 0 1 2 3 4 Cases 5 Number of function calls Results(example 2) Number of function calls 5.0E+05 4.0E+05 3.0E+05 2.0E+05 Simple 1.0E+05 DGA 0.0E+00 DRGA 0 1 2 3 4 cases 5 Results(example 3) Pareto optimum solutions DGA DRGA Results(example 4) Pareto optimum solutions SGA DRGA Results(example 4) Cover rate 1.0 Cover rate 0.8 0.6 Simple 0.4 DGA 0.2 0 1 2 3 4 Cases 5 DRGA Number of function calls Results(example 4) Number of function calls 1.2E+04 1.0E+04 7.5E+03 5.0E+03 Simple 2.5E+03 DGA 0.0E+00 DRGA 0 1 2 3 Cases 4 5 How DRGA works well? + f1(x) + f1(x) f2(x) f2(x) f2(x) = f1(x) ・DRGA f1(x) f2(x) f2(x) f2(x) ・DGA = f1(x) f1(x) Conclusions In this study, we introduced the new model of genetic algorithm in the multi objective optimization problems: Distributed Genetic Algorithms (DRGAs). DRGA is the model that •is suitable for the parallel processing. •can derive the solutions with short time. •can derive the solutions that have high accuracy. •can sometimes derive the better solutions compared to the single island model.
© Copyright 2025 ExpyDoc