高次の座を用いた代数幾何符号の構成 On Construction of Algebraic Geometric Codes with High Degree Places (Update : 2001.02.02) 戒田高康 (Takayasu KAIDA) 八代工業高等専門学校 情報電子工学科 Dept. of Information and Electronic Engineering, Yatsushiro National College of Technology Outline of the Presentation • Background and preparations • Code with high degree places by Xing, et.al. • Function type code and residue type code with high degree places • Relation between Xing’s code and proposed code • Decoding for proposed code • An example over an elliptic function field • Conclusion and future works Background • Algebraic geometric (AG) code – Its code length is restricted by Hasse-Weil bound • AG code with high degree places – C.Xing, H.Neidereiter and Y.K.Lam[2,3], 1999. – T.Kaida, K.Imamura and T.Moriuchi[5,6], Not only function type but also residue type, 1995~2000 • Relation of codes proposed in [1,2,3] – One construction is new and interested[4], 1999 Preparations [7]H.Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, 1993 K Fq GF (q) F / K : an one variablealgebraic functionfield overa full constantfield K P : a placeover F / K , FP : the residue field of P, deg P m FP Fq m Code Proposed by Xing, et.al. P1 , P2 ,...,Pr : distinct places with ki deg Pi for i 1,2,...,r r D Pi , G : divisors with suppG supp D i 1 i : FP Ci : an K - linear isomorphism to i [ni , ki , d i ] code Ci K n for i 1,2,...,r L(G ) K n r : f ( 1 ( f ( P1 )),..., r ( f ( Pr ))), where n ni i 1 T hecode is defined by C X ( D, G, ) { ( f ) K n | f L(G )} Parameters of the code r If deg G ki t henC X ( D, G, ) is [ n, k , d ] code wit h i 1 k l (G ) deg G 1 g , d , where X S {1,...,r} ki deg G iS and min d i S X iS Function Type Code Definit ion1 : P : a placeover F / K wit h d deg P V {V1 ,V2 ,, Vd } : a basis of FP over K FP K d : f ( P) ( f1 , f 2 , , f d ) such t hat f ( P) f1V1 f 2V2 f dVd , f j K for j 1,2, d (1) Function Type Code Definit ion2 : P1 , P2 , , Pr : r dist inct placesover F / K wit h d i deg Pi for i 1,2, , r D, G : divisors over F / K such t hat r D Pi , supp G supp D Ø i 1 V ( i ) : a basis of FPi over K for i 1,2, , r Vˆ {V ( 1 ) , V ( 2 ) , , V ( r ) } : a basis set Funct ion t ype of code is defined by C L ( D, G , Vˆ ) {( f ( P1 ), f ( P2 ), , f ( Pr )) | f L(G )} (2) Residue Type Code Definition3 : : a different al i module over F / K P : a placeover F / K with d deg P V {V1 ,V2 , , Vd } : a basis of FP over K F ' / K ': algebraic funct ionfield such t hat F ' FK ' and K ': the d - th ext ensionfield P1 , P2 ,, Pd : r distinct placesover F ' / K ' such t hat Pi P, deg Pi 1 for i 1,2,, d Re sidue map is defined by Res P ( ) {e1 , e2 ,, ed }, for j 1,2, , d d e j V j ( Pi ) Res Pi ( ) i 1 (3) Residue Type Code Lemma4 : T heresidue map of P over F / K with d deg P is themap from Ω to K d Definition5 : divisors D, G and basis set Vˆ are setting the same as Definition1 & 2 Re sidue typecode is defined by C ( D, G,Vˆ ) {(Res ( ), , Res ( ) | (G D)}(4) P1 Pr Duality of Function and Residue Code Definition6 : K ': an exitensionfield of K , F ' / K ': F ' FK ' P : a placeover F / K T heconormof P is defined by ConF '/ F ( P) P', P ' P where thesum runs overall places P' over F ' / K ' such thatP' P T heconormof D nP P is defined by ConF '/ F ( D) nP ConF '/ F ( P) Duality of Function and Residue Code T heorem7 : T hefuntion type code, C L ( D, G,Vˆ ), is thedual code of theresidue typecode, C ( D, G,Vˆ ) (Proof): d LCN (d1 , d 2 ,, d r ), K ' Fq d , F ' FK ' r di D' ConF '/ F (D) Pij , G ' ConF '/ F (G) i 1 j 1 CL ( D' , G ' ,Vˆ ) with Vˆ {{1}, {1}, ,{1}} is convention al AG code C L ( D' , G ' ) over K ' Duality of Function and Residue Code (P roof) For i 1,2, , r V1(i ) ( Pi1 ) V1(i ) ( Pidi ) Ti Vd(i ) ( Pi1 ) Vd(i ) ( Pid ) i i i non - singular mat rix 0 T1 T 0 Tr Duality of Function and Residue Code (P roof) G ' L : generat ormat rixof C L ( D' , G ' ) H ' L : check mat rixof C L ( D ' , G ' ) GL : generat ormat rixof C L ( D, G , Vˆ ) G : generat ormat ixof C ( D, G , Vˆ ) G ' L GLT , t H ' L T G , where T t : t he t ransposit ion mat rixof T G ' L ( H ' L ) t 0 GL (G ) t 0 □ Relation of CX and CL : [ki , ki , d i ] code Ci for i 1,2,...,r C L ( D, G, Vˆ ) C X ( D, G, ) ※ C L is a specialcase of C X Decoding for Proposed Codes • By generator matrix of the dual code • In extension field by t G ' GLT or H' G T 1 , 0 T1 where non - singular mat rixT , 0 Tr V1( i ) ( Pi1 ) V1( i ) ( Pidi ) Ti for i 1,2, , r Vd( i ) ( Pi1 ) Vd( i ) ( Pid ) i i i An Example Example8 : K GF (2) , F K ( x, y ) such that y 3 y x 2 1 0 F / K : an ellipticfunctionfield 5 Let D Pi , G 6Q and Vˆ {{1}, {1}, {1, x}, {1, x}, {1, x, y}} i 1 L (G ) 1, x, y, x 2 , xy, y 2 dx dx dx (G D) , 2 , 2 2 ( x 1)(x x 1) ( x x 1)(x y ) y ( x 2 y ) An Example (Ex. 8) Table 1. Places over F/K with deg≦3 and local parameters (LP) over F, K(x) and K(y) Pi Q P1 P2 P3 P4 P5 P6 P7 deg 1 1 1 2 2 3 2 3 LP of K(x,y) y/x x+1, y x+1, x2+y x2+x+1, y x2+x+1, y+1 x2+y x x2+y+1 LP of K(x) 1/x x+1 x+1 x2+x+1 x2+x+1 x3+x+1 x x3+x+1 LP of K(y) 1/y y+1 y+1 y y+1 y3+y+1 y2+y+1 y3+y2+1 An Example Example8 : K ' GF (2 ), F ' FK ' since d1 d 2 1, d 3 d 4 2, d 5 3 6 5 di D' Pij , G ' ConF '/ F (G ) 6Q i 1 j 1 GF(2 ), 1 0 2 2 GF (2 ), 1 0 6 3 An Example (Ex.8) Table 2. Places over F’/K’ with deg=1 and their LP Pij LP of F’/K’ P11 x+1, y P41 x+, y+1 P21 x+1, y+1 P42 x+2, y+1 P31 x+, y P51 x+, y+ 2 P32 x+2, y P52 x+ 2, y+4 P53 x+4 , y+ Pij LP of F’/K’ An Example Example8 : 111010100 110101010 111010000 010010001 011011100 GL , G 111111001 111000101 010011110 010010011 From all code words C ( D, G , Vˆ ) : (9,6,1) binary code L C ( D, G , Vˆ ) : (9,3,3) binary code Conclusion • The definition of codes with high degree places – by Xing, et.al. (function type) – function type and residue type • The duality of function and residue type code • Function type is a special case of Xing’s code • An example over an elliptic function field Future Works • Residue type of Xing’s code • Theoretical evaluation for the minimum distance of proposed code • Decoding method of proposed code • Relation between proposed code and conventional codes (AG code, sub-field subcode, concatenated code) References [1]C.Xing, H.Niederreiter and K.Y.Lam, “Constructions of algebraic-geometry codes”, IEEE Trans. Information Theory, vol.45, pp.1186-1193, May 1999. [2] H.Niederreiter, C.Xing and K.Y.Lam, “A new construction of algebraicgeometry codes”, Applicable Algebra in Engineering, Communication and Computing, vol.9, pp.373-381, Springer-Verlag, 1999. [3] C.Xing, H.Niederreiter and K.Y.Lam, “A generalization of algebraicgeometry codes”, IEEE Trans. Information Theory, vol.45, pp.2498-2501, Nov. 1999. [4]F.Ozbudak and H.Stichtenoth, “Constructing codes from algebraic curves”, IEEE Trans. Information Theory, vol.45, pp.2502-2505, Nov. 1999. [5]戒田高康, 今村恭己, 森内勉, “高次の座を用いた代数幾何符号に関する 考察”, 第18回情報理論とその応用シンポジウム予稿集, pp.231-234, 花 巻, 1995年10月 [6]T.Kaida and K. Imamura, “Residue type of algebraic geometric codes with high degree places”, Proc. Of International Symposium on Information Theory and Its Applications, pp.453-456, Honolulu, Nov. 2000. [7]H.Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, 1993.
© Copyright 2024 ExpyDoc