電子線を用いた中重ラムダハイパー核分光実験の 為の

電子線を用いた中重ラムダハイパー核分光実験の為の
高多重度用飛跡再現コードの開発
Department of Science, Tohoku University
Toshiyuki Gogami ( 後神 利志 )
JLab E05-115 collaboration, 2009, JLab Hall-C
全体・解析
18aSG-2
川間
JPS 2011 autumn meeting, T.Gogami
1
Contents
1.
2.
3.
4.
Experimental Setup of JLab E05-115
Motivation of Tracking Code Development
New Tracking Code
Summary & outlook
JPS 2011 autumn meeting, T.Gogami
2
Contents
1. Experimental Setup of JLab E05-115
JPS 2011 autumn meeting, T.Gogami
3
Experimental setup of JLab E05-115
Data taking : Aug-Nov 2009
p(e,e’K+)Λ
HKS chamber wire configuration
Tracking
2×10-4
7 [msr]
3 – 12 [deg]
7Li
2×10-4
8.5 [msr]
2 – 12 [deg]
, 9Be , 10B , 12C , 52Cr
( 7ΛHe , 9ΛLi , 10ΛBe , 12ΛB , 52ΛV )
2 - 50 [μA]
10 - 300 [THz]
JPS 2011 autumn meeting, T.Gogami
4
Contents
2. Motivation of Tracking Code Development
JPS 2011 autumn meeting, T.Gogami
5
Background event of HKS
REAL DATA
x [cm]
y [cm]
9Be
SIMULATION
, 38.4 [μA]
KDC1
KDC2
KDC1
KDC2
z [cm]
e+ from
𝑥
pair creation ∝
𝑋0
~2.24
H2O
~4.94
JPS 2011 autumn meeting, T.Gogami
6
Discrepancy of Number of Λ
CH2 Target
The number of Λ
NΛ ≈ Nexpect
12C
quasi-free
H2O Target
Λ
The number of Λ
NΛ ≈ ¼ Nexpect
Λ
Σ0
Acc. b.g.
REAL DATA
Black : hit wires
Blue : selected wires
Red : track
Σ0
16O
quasi-free
Acc. b.g.
REAL DATA
Black : hit wires
Blue : selected wires
Red : track
Lost events that we are interested in in tracking procedure.
JPS 2011 autumn meeting, T.Gogami
7
Contents
3. New Tracking Code
JPS 2011 autumn meeting, T.Gogami
8
Conventional JLab Hall-C
tracking procedure
Real data
52
CHCr2 target
Good TDC
High multiplicity
Pattern recognition
KDC1
Black : hit wires
Blue : selected wires
Red : track
Solve left right
Select good combination
Combination selection with TOF counters
Track fit
Reduce hit wire combinations
(h_tof_pre.f)
JPS 2011 autumn meeting, T.Gogami
9
New tracking scheme
Good TDC
High multiplicity
Point
Pattern recognition
• Hit wire selection with TOF
• 1X & 2X
• Grouping
• Pre-PID
• Cherenkov detectors
• 𝑑𝐸 𝑑𝑥
Reduce hit wires to analyze
Solve left right
Select good combination
Combination selection with TOF counters
Track fit
Reduce hit wire combinations
(h_tof_pre.f)
JPS 2011 autumn meeting, T.Gogami
10
DC hit info. selection with TOF
Gravity
CUT
~17%
CUT
Particle direction
~8%
Maximum gradient
Minimum gradient
JPS 2011 autumn meeting, T.Gogami
11
Check works of the code
Gravity
• GREEN region
Selective region
• RED markers
Selected hit wires
• BLACK markers
Rejected hit wires
Particle direction
JPS 2011 autumn meeting, T.Gogami
12
Results of
Introduction of new Tracking Code
Increased !
Increased !
• NΛ ≈ ¼ Nexpect
H2OT.Gogami
JPS 2011 autumn meeting,
 NΛ ≈ ½ Nexpect
13
Contents
4. Summary & outlook
JPS 2011 autumn meeting, T.Gogami
14
Summary & outlook
• Summary
– JLab E05-115 ( 7ΛHe , 9ΛLi , 10ΛBe , 12ΛB , 52ΛV )
– Develop New Tracking code for high multiplicity data (H2O, 52Cr
target)
» NΛ ≈ ¼ Nexpect
 NΛ ≈ ½ Nexpect
• Outlook
– Tracking code
• Add y-position of TOF counters
• Add Cherenkov information
– Tracking efficiency
– Parameter Optimization
JPS 2011 autumn meeting, T.Gogami
全体・解析
18aSG-2
川間
15
END
Thank you for your attention
E05-115 experiment, JLab Hall-C, 2009
JPS 2011 autumn meeting, T.Gogami
16
HKS detectors
June 2009 in JLab Hall-C
1 [m]
HKS trigger
•CP = 1X ×1Y × 2X
•K = WC × AC
 CP × K
−
~18 [kHz]
(8 [μA] on 52Cr)
p
K+
π+
K+
p, π+
Cherenkov detectors -AC,WC• Aerogel (n=1.05)
• Water (n=1.33)
TOF walls -2X,1Y,1X(Plastic scintillators)
TOF σ
APFB2011 in Korea (T.Gogami)
≈ 170 [ps]
Drift chambers
-KDC1,KDC2σ ≈ 200 [μm]
17
HES Detectors
HES D magnet
Drift chambers
- EDC1 , EDC2 TOF walls - EH1 , EH2 (Plastic scintillators)
σ ~ 300 [ps]
Time Of Flight
HES trigger
EH1 × EH2
e
~2 [MHz]
(8 [μA] on 52Cr)
APFB2011 in Korea (T.Gogami)
18
Data Summary
JLab E05-115 (2009/June – 2009/Nov)
APFB2011 in Korea (T.Gogami)
19
Singles rate summary
HKS
Up to ~30 [MHz]
HKS trigger
~ 10[kHz]
HES
COIN ≤ 2.0 [kHz]
Up to ~15 [MHz]
HES trigger
~ a few[MHz]
APFB2011 in Korea (T.Gogami)
20
Hit wires event display (2)
v v’
u u’
v v’
u u’
particle
particle
x x’
x x’
• GREEN region
Selective region
• RED markers & lines Selected hit wires
• BLACK markers & lines Rejected hit wires
APFB2011 in Korea (T.Gogami)
21
KTOF multiplicity
~2.7
~1.8
~6.5
~3.8
Multiplicity
of KDC are not only high52Cr , 77124
CH2 , 76314
but also TOF counters are! (for heavy target )
APFB2011 in Korea (T.Gogami)
22
Background event from NMR port
9Be
KDC1
These particles
come from
NMR port
KDC2
KDC1
KDC2
9Be
, 38.4 [μA]
KDC1
x [cm]
KDC2
Overhead view
y [cm]
KDC1
KDC2
Side view
9Be
HKS dipole magnet
, 38.4 [μA]
z [cm]
, 38.4 [μA]
Background events
Β≈1
e- , e+
NMR port
Events on HKS optics
APFB2011 in Korea (T.Gogami)
23
B.G. mix rate (real data)
b
a
B.G mix rate =
* hks ntulpe
APFB2011 in Korea (T.Gogami)
𝑏
𝑎+𝑏
24
e+ simulation
SIMULATION
• To see
1. Number of event
2. Angle & momentum
of e+ generated in target
APFB2011 in Korea (T.Gogami)
25
Target thickness dependence
(Simulation)
SIMULATION
52Cr
H2O
9Be
12C
CH2
10B
7Li
Consistent with B.G. mix rate !
APFB2011 in Korea (T.Gogami)
26
Angle and momentum distribution
of positrons
SIMULATION
Generate these
event in HKS GEANT
(Next page)
HKS cannot accept positrons directly !
APFB2011 in Korea (T.Gogami)
27
e , e+ background
in GEANT simulation
e+ generated in target make HKS dirty
Number of
e+
Correlation
(Simulation)
KDC1
B.G. mix rate (Real data)
KDC2
e- , e +
Vacuum chamber
(sus304)
NMR port
(sus304)
• Generated particle : e+
• Distribution : spherical uniform
• Momentum : 860 – 1000 [MeV/c]
• Angle : 0 – 2 [mrad]
APFB2011 in Korea (T.Gogami)
28
• 1000 events
Apply to u,v-layer
v v’-layer
Selective region determined by
1X and 2X
Convert
x x’-layer
Applied to uu’ and vv’ layers , too.
APFB2011 in Korea (T.Gogami)
29
Hit wires event display (2)
v v’
u u’
v v’
u u’
particle
particle
x x’
x x’
• GREEN region
Selective region
• RED markers & lines Selected hit wires
• BLACK markers & lines Rejected hit wires
APFB2011 in Korea (T.Gogami)
30
Spectroscopic experiment
by (e,e’K+) reaction
e
p
e’-Spectrometer
e-
e
u
u
d
pe’
e + p ➝ e’ + K+ + Λ
Feynman diagram
γ* u K+
–s
s
u Λ
d
γ*
p
n
Λ
target nucleus
1.
2.
3.
Missing Mass HHY
K+
K+-Spectrometer
pK+
Large Momentum transfer
• Λ can be bounded in deeper orbit
Λ’s spin at forward angle
• Spin flip ~ spin non-flip
Proton  Λ
• Absolute mass value calibration
APFB2011 in Korea (T.Gogami)
31
JLab E05-115 experimental setup
e + p → e’ + Λ + K+
2×10-4
7 [msr]
3 – 12 [deg]
7Li
2×10-4
8.5 [msr]
2 – 12 [deg]
, 9Be , 10B , 12C , 52Cr
• (e,e’K+) experiment
Primary beam
• High intensity
Thin target (~100 [mg/cm2])
• High quality
APFB2011 in Korea (T.Gogami)
1.
2.
3.
Coincidence experiment
(K+ and e-)
Small cross section
( ~100 [nb/sr] ) 1/1000
Energy resolution
32
Sub MeV (FWHM)
JLab CEBAF ( Continuance Electron
Beam Accelerator Facility )
• (e,e’K+) experiment
1.
2.
3.
Coincidence experiment
(K+ and e-)
Small cross section
( ~100 [nb/sr] ) 1/1000
Energy resolution
sub MeV (FWHM)
• Requirements for accelerator
1. High duty factor (~100%)
2. High intensity ( >a few 10 μA )
3. Small emittance ( ~2 [mm・μrad] )
Small ΔE/E ( <1×10-4 )
100 [m]
CEBAF was unique
facility
before MAMI updated
Experimental Hall
APFB2011 in Korea (T.Gogami)
33
Coincidence time vs. Mass square
APFB2011 in Korea (T.Gogami)
34
Cherenkov cut
APFB2011 in Korea (T.Gogami)
35
Cherenkov light
APFB2011 in Korea (T.Gogami)
36
HESの構成
ED1
Max. Field Gradient
7.8[T/m]
Max. Current
800[A]
Total magnet weight
2.8[ton]
EQ2
Max. Field Gradient
5.0[T/m]
Max. Current
800[A]
Total magnet weight
3.1[ton]
ED
Max. Field
1.65[T]
Max. Current
1065[A]
Total magnet weight
36.4[ton]