Wednesday, July 29 - NACE International

The following technical program is correct at time of publishing. However, given the seniority of our speakers and the nature of
their roles, speakers may subsequently substitute or remove themselves from the program. This is always regrettable, and we
will always try to replace the speaker with a speaker with equivalent insight.
Wednesday, July 29
9:00 –
10:30
10:30 –
11:30
Opening Session and Welcome - Moritz I
Expo Opening - Moritz II
11:30 –
13:00
Special Guest Presentation - Moritz I
Presented by: W. Kent Mulhbauer, WKM Consultancy, LLC
13:00 –
14:30
Lunch - Moritz III & IV
Integrity Management
Moritz I
14:30 –
15:00
Inspección Indirecta – Perder la Oportunidad de Evaluación
Indirect Survey- Missing the Assessment Opportunity
Presented by: Britney Taylor, Campos EPC LLC
15:00 –
15:30
Aplicación del Sistema de Recubrimiento Termoplástico Orgánico con Inhibidores de Rayos UV
y de Corrosión Incorporados
Application of Organic Thermoplastic Coating System with Built in Corrosion and UV Inhibitors
Presented by: Thomas Fink, TECNOFINK
15:30 –
16:00
Iniciación de un Plan de Gestión de la Integridad para Empresas sin Experiencia
Initiation of an Integrity Management Plan for Companies with No Experience
Presented by: Roberto Chavez, Andes Petroleum Ecuador Ltd
16:00 –
16:30
Visit with Exhibitors – Moritz ll
Sesiones Sobre Gestion de la Integridad
Integrity Management
Moritz I
Sesiones de Software/Terceros/Fuerzas
Naturales
Software/Third Party/Natural Forces
Moritz III & IV
16:30 –
17:00
Análisis MP-ICDA (Flujo Multifásico Evaluación Directa de la Corrosión Interna) en
las Tuberías Colectoras de Bloque 12 y bloque
15 en Petroamazonas EP en Ecuador
MP-ICDA Analysis on Block 12 and Block 15
Gathering Pipelines on Petroamazonas EP in
Ecuador
Presented by: Carlos Melo Gonzalez,
Petroamazonas EP & Pat Teevens, Broadsword
Corrosion Engineering Ltd.
Varaiables Que Se Deben Tomar en un Modelo
de Consecuencias Para Oleoductos
Variables to be Taken on a Consequences
Model for Pipelines
Presented by: Ivonne Vinocuna, OCP
Ecuador S.A.
17:00 –
17:30
Reparación Permanente de Tuberías
Utilizando Materiales Compuestos Conforme
con los Estándares Internacionales
Permanent Pipeline Repair Using Composite
Materials According with International
Standards
Presented by: Thomas Fink, TECNOFINK
Sistema de Informacion Para la Gestion de
Integridad en Gasoductos – Sigmi
Management Information System for the
Pipeline Integrity Management - Sigmi
Presented by: Maria Salas Cabezas, Corporación
para la Investigación de la Corrosión
17:30 –
19:30
Welcome Event in Expo Area - Mortiz II
Thursday, July 30
9:00 –
10:30
10:30 –
11:00
11:00 –
11:30
Special Guest Presentation – Mortiz I
¿Qué Puedo Hacer Respecto a la Integridad de Ductos?
What Can I Do About Pipeline Integrity?
Presented by: Jim Feather, NACE International President
Sesiones Sobre Gestion de la Integridad
Integrity Management
Moritz I
Sesiones de Software/Terceros/Fuerzas
Naturales
Software/Third Party/Natural Forces
Moritz III & IV
Estudio de Integridad Mecánica del Oleoducto
26” Sacha – Lago Agrio de Petroamazonas EP
Study of Mechanical Pipeline Integrity 26
“Sacha - Lago Agrio Petroamazonas EP
Presented by: Fernando Bedón, Petroamazonas
EP
Utilización de la Tecnología de Inspección
Interna INS/GPS Para Identificar áreas de
Desplazamiento de la Tubería
Using the Internal Inspection Technology
INS/GPS to Identify Areas of Pipeline
Displacement
Presented by: Ariel Balsamo, NDT
Visit with Exhibitors – Moritz – II
Sesiones Sobre Gestion de la Integridad
Integrity Management
Moritz I
Sesiones de Software/Terceros/Fuerzas
Naturales
Software/Third Party/Natural Forces
Moritz III & IV
11:30 –
12:00
Propuesta de un Algoritmo para Evaluar la
Pérdida de Metal Local Aplicada al Cálculo del
Factor de la Resistencia Remanente
Algorithm Proposal for Assessment Local
Metal Loss Applied to Remaining Strength
Factor Calculation
Presented by: Walter Francisco Gonzalez
Zapatero, Instituto Politécnico Nacional, Grupo de
Analisis de Integridad de Ductos
Evaluacion de la Probabilidad de Falla de un
Oleoducto Sometido a Amenazas Naturales
Evaluation of the Probability of Failure of a
Pipeline Submitted to Natural Hazards
Presented by: Gualberto Chiriboga, OCP Ecuador
Tendencias de PIMS en Sudamérica
PIMS South America Tendencies
Presented by: Francisco Medina, ROSEN
Integración de Análisis de Riesgo Cuantitativo
en la Integridad de Tuberías con Evaluaciones
de Trayectoria de Derrames y Riesgos
Geológicos
Integration of Quantitative Risk Analysis in
Pipeline Integrity With Geohazard and Spill
Trajectory Assessments.
Presented by: Alvaro Escobar, Tory
Technologies, Inc.
12:00 –
12:30
12:30 –
13:00
13:00 –
14:30
Gestión de la integridad de las Tuberías
Unpiggable (que no Permiten la Inspección en
Línea) y el Desafío de la Probabilidad de un
Diagnóstico de Fallas
Integrity Management of Unpiggable Pipelines
and the Challenge of Probability of Failure
Assessment
Presented by: Angel Kowalsky, DNV
Lunch - Moritz III & IV
Sesiones Sobre Gestion de la Integridad
Integrity Management
Moritz I
14:30 –
15:00
Análisis Comparado de Los Sistemas de Mapeo
de Corrosión por Arreglo de Fase Vs. Los
Sistemas de Ult
Comparative Analysis of the Corrosion
Mapping Systems by Phase-fixing vs. the Ult
Systems
Presented by: Myrian Anzola, Tecsud
15:00 –
15:30
Evaluación Externa Directa de Tuberías
Mediante Escáneres Laser 3D
External Pipeline Direct Evaluation through 3D
Laser Scanners
Presented by: Mark Maizonnasse, Creaform
Sesiones de Software/Control de la Corrosion
Software/Corrosion Control
Moritz III & IV
Gestion de Indicaciones de Reportadas por
Análisis de Datos Tomados por una
Herramienta de Mapeo Inercial
Inertial Indications Management Tools
Presented by: Pedro Jaya, OCP Ecuador
Sesiones Sobre Gestion de la Integridad
Integrity Management
Moritz I
15:30 –
16:00
¿Realiza Realmente una Gestión de la Integridad de su Tubería?
Are You Really Managing Your
Pipeline Integrity?
Presented by: Chris Rodgerson, Penspen
16:00 –
16:30
Visit with Exhibitors – Moritz – II
Sesiones Sobre Gestion de la Integridad
Integrity Management
Moritz I
16:30 –
17:00
Análisis de los Riesgos Cuantitativos de un Gasoducto en la Exportación de gas Natural
Quantitative Risk Analysis of a Pipeline to Natural Gas Exportation
Presented by: Silvana Arias Robayo, Tecnicontrol - Bureau Veritas Colombia S.A
19:00 –
22:00
Social Event – Moritz III & IV
Friday, July 31
8:30 –
9:30
9:30 –
10:00
Keynote Presentation - Moritz I
Gestión Eficaz de la Integridad de la Tuberia y la Corrosion
Pipeline Integrity and Effective Corrosion Management
Presented by: Angel Kowalsky, DNV
Sesiones Sobre Gestion de la Integridad
Integrity Management
Moritz I
Sesiones de Control de la Corrosion
Corrosion Control
Moritz III & IV
Aplicación y Control de Calidad de la
Instalación en Campo de Mantas
Termocontráctiles Como recubrimiento
Externo Para Juntas Soldables en la
Construcción de Sistemas de Tuberías
Application and Quality Control of Field
Installation in Campo de Mantas
Termocontráctiles as External
Coating for Weld Joints in the Construction
of Pipeline Systems
By: Daniel Ona Rivas, Constructora Norberto
Odebrecht
Control de la Corrosión en Plantas
con Altas Concentraciones de Sulfuro de
Hidrógeno (H2S)
Control of Corrosion in Facilities with High
Concentrations of H2S
Presented by: Franklin Casa, Andes Petroleum
Ecuador Ltd
10:00 –
10:30
10:30 –
11:00
11:00 –
11:30
11:30 –
12:00
12:00 –
12:30
12:30 –
13:00
13:00 –
14:30
Nueva Generacion de Recubrimientos
Resistentes a la erosion-corrosion aplicados
por Rociado en Sistemas Tuberias y Equipos
de Proceso
New Generation Erosion Resistant Spray
Applied Internal Linings for Pipelines and
Process Equipment
Presented by: Pedro Ruiz, Belzona
Evaluación de la Condición de las Tuberías de
Acero y Tubos Cilíndricos de Concreto
Pretensado (PCCP) en Guayaquil (Ecuador)
Condition Assessment of Steel and PCCP
Pipelines in Guayaquil-Ecuador
Presented by: Juan Isaza, Pure
Technologies, Inc.
Implementacion del Proceso ILI
(In Line Inspection) en Coampos
Maduros En Selva
Implementation of ILI (In Line Inspection)
process, in mature
fields in forest
Presented by: Andres Rodriguez, GIE Peru
Diseño y Aplicación de un Programa de
Tratamiento para Prevenir la Corrosión Interna
en una Tubería de Perú
Design and Application of a Treatment Program
to Prevent Internal Corrosion
in a Peruvian Pipeline
Presented by: Jeffrey Kramer, BWA
Water Additives
Visit with Exhibitors – Moritz – II
Sesiones Sobre Gestion de la Integridad
Integrity Management
Moritz I
Sesiones de Control de la Corrosion
Corrosion Control
Moritz III & IV
Implementación y Resultados de
un Sistema de Gestión de la
Integridad de Tuberías
Implementation and Results of a Pipeline
Integrity Management System
Presented by: Paulo Serna, Repsol
Ecuador BU
Influencia de Pigging en una Película Inhibidora
de la Corrosión en las Tuberías
Influence of Pigging in Corrosion
Inhibitor Film in Pipelines
Presented by: Paul Cabadiana y Raúl Alcivar
Macías, Andres Petroleum Ecuador Ltd.
El Monitoreo Continuo y No Invasivo en
Estructuras Eléctricas Mediante Sistems de
Mapeo de Campo Eléctrico y Monitero de
Tensión
Presented by: Edgardo Romero
Deformación interna de una Tubería de
Líquidos Debido al Gas Atrapado entre el
Refuerzo Metálico Soldado
(manga) y la pared de la Tubería
Internal Deformation of 20in Fluid Pipeline
Due to Gas Trapped Between Welded
Metallic Reinforcement (sleeve) and the
Pipe’s Wall
Presented by: Fernando Eguiguren, Repsol
Ecuador BU
Lunch - Moritz III & IV
Sesiones Sobre Gestion de la Integridad
Integrity Management
Moritz I
14:30 –
15:00
15:00 –
15:30
15:30 –
16:00
Sesiones de Control de la Corrosion
Corrosion Control
Moritz III & IV
Analisis de la Causa Raiz de Falla
en une Linea de Fluido
Root Cause Analysis of a Fluid Line Failure
Presented by: Clarien Guerrero, Corporación
para la Investigación de la Corrosión
Especificación de recubrimientos de
Tuberías – Acerca de los Criterios de
Diseños Apropiados
Specifying Pipeline Coatings - What About
Appropriate Design Criteria
Presented by: Erik Broesder, STOPAQ
Salto de Corriente de Proteccion ca Todica en
Lineas de Transporte de Agua de Formacion
Jump Current Cathodic Protection in
Transportation Lines of Water Formations
Presented by: Franklin Sanchez, Repsol
Ecuador BU
Situaciones no Esperadas que Pueden
Amenazar la Integridad en Oleoductos
Durante la Ejecución de Inspecciones
Internas y Procesos de Limpieza
Unexpected Situations that may Threaten
Pipeline Integrity During the Execution of
Internal Inspections and Cleaning Processes
Presented by: German Gaibor, OCP Ecuador
Uso de 3LPP Como Revestimiento en Tuberías
de Alta Temperatura
Using 3LPP as Coating in High
Temperature Hoses
Presented by: Lorena Velasco, Repsol
Ecuador BU
DESCRIPCIONES DE LAS SESIONES TÉCNICAS
TECHNICAL SESSION DESCRIPTIONS
PONENCIA MAGISTRALS
KEYNOTE PRESENTATIONS
The Evolution of Pipeline Risk Assessment--Good News for Managing Risks
Presented by W. Kent Muhlbauer, WKM Consultancy, LLC
W. Kent Muhlbauer is founder and principal of WKM Consultancy, LLC, a firm specializing in pipeline risk management,
including all aspectsof pipeline design, construction, operations, maintenance, and integrity management. Mr. Muhlbauer is
the author of 4 highly regardedbooks on pipeline risk management as well as numerous technical publications. With over 35
years’ experience in the pipeline industry, Mr Muhlbauer is an advisor to government regulatory agencies as well as pipeline
operators and remains an oft-invited speaker at industryconferences worldwide. Since its inception in 1994, WKMC, LLC has
been the primary consultant in numerous pipeline technical and managerial projects for over 100 clients, including most major
U.S. and international pipeline operating companies, as well as regulators, insurers, academicians, attorneys, and other
stakeholders worldwide. WKM Consultancy, LLC has recently established www.pipelinerisk.net as a resource website for all
practitioners of pipeline risk management.
¿Qué Puedo Hacer Respecto a la Integridad de Ductos?
What Can I Do About Pipeline Integrity?
Presented by Jim Feather, NACE International President
Pipeline integrity continues to grow in importance in the view of operators, governments and citizens of all countries. It has
many aspects, with corrosion and material degradation being just one of them. NACE International is at the forefront of
developing understanding about pipeline degradation and developing information to help address it. Pipeline operations and
regulations are changing, and these changes can impact how pipeline integrity is addressed. NACE International’s conference
theme – “Collaborate, Educate, Innovate, Mitigate” – provides a valuable context for individuals involved in pipeline integrity
to understand the resources that NACE International offers our members and customers and to become actively engaged in
integrity management.
Gestión Eficaz de la Integridad de la Tuberia y la Corrosion
Pipeline Integrity and Effective Corrosion Management
Presented by Angel Kowalsky, DNV
Pipeline systems operators continuously work to improve the safe operation of their assets. To support this process they
develop and execute a pipeline integrity management program that provides a systematic, comprehensive, and integrated
approach to manage the safety and integrity of their pipeline systems. Corrosion is an integrity threat that - when managed
reactively - may reduce the capacity to transport products, may generate leaks, or may rupture, resulting in fire, loss of life,
environmental damage and / or loss of business. The central elements of an effective corrosion management program are
presented. These elements are part of the corrosion management program framework, and will support pipeline operators in
their efforts to evolve from a reactive approach, to a proactive corrosion management system. Some benefits of implementing
a proactive approach are presented.
SESIONES SOBRE GESTIÓN DE LA INTEGRIDAD
INTEGRITY MANAGEMENT SESSIONS
Iniciación de un Plan de Gestión de la Integridad para Empresas sin Experiencia
Initiation of an Integrity Management Plan for Companies with No Experience
Presented by: Roberto Chavez, Andespetroleum
Implementing an Integrity Program within an organization that is NOT familiar with mechanical integrity issues is not an easy
assignment. Simple issues like: where does this group fit within the company organization, who do they report to, what is
there specific function, etc. impacts & affects greatly the implementation process. Additionally, what methodology or
screening criteria is used to evaluate asset or equipment integrity, what resources are available and how can these be used
efficiently, who creates the inspection programs & procedures, how is data collected and stored, who creates the annual
budgets, who notifies or fulfills government requirements, what tools or software are available & applicable, etc. The
presentation will include the following information:
 How to start?
 Do I need a software?
 Plan definition.
 What information do I need?
 What to do with the information.
 Future responsibilities.
Inspección Indirecta – Perder la Oportunidad de Evaluación
Indirect Survey- Missing the Assessment Opportunity
Presented by: Britney Taylor, Campos EPC LLC
One very significant incident tied to misapplication of External Corrosion Direct Assessment (ECDA) in the United States could
have spoiled the reputation of indirect survey tools for the whole industry. Resulting from a widespread misinterpretation of
the prescriptive use of ECDA in the United States, indirect survey tools like Close-Interval-Survey Pipe-to-Soil (CIS P/S) and
Direct Current Voltage Gradient (DCVG) are an underutilized option for buried, metallic pipeline assessments. As industry
experts, we have a responsibility to be stewards for the correct use of indirect survey tools. When utilized correctly, these tools
can prevent catastrophic corrosion failures and be more reliable threat indicators than other, more industry-prevalent tools
like in-line-inspection when utilized correctly. This presentation compiles 4 years (over 300 miles) of ECDA and indirect survey
integrity assessments on pipelines across the central and southwestern United States in an effort to shed light on common
misconceptions regarding what indirect assessment tools can find and how to best record and analyze the data they provide.
Aplicación del Sistema de Recubrimiento Termoplástico Orgánico con Inhibidores de Rayos UV y de Corrosión Incorporados
Application of Organic Thermoplastic Coating System with Built in Corrosion and UV Inhibitors
Presented by: Thomas Fink, TECNOFINK
The use of dissimilar metals, complex shapes and nature of bolted structures make them a breeding ground for oxidisation that
seems impossible to totally eradicate using existing anti-corrosion methods. Mainly pumping and manifold stations on
pipelines contains a relevant amount of different components such as flanges, valves, vents, etc. The maintenance and fault of
these sensitive parts may involve relevant costs, operational down time and safety exposure for the installation. This method
has a wide range of potential applications over the entire Oil & Gas industry, recording nowadays references on offshore
platforms, refineries, tank farms, oil terminals, etc… Other successful segments are mining (ex. belt conveyor bearings), steel
plants and electrical distribution.
The Organic Thermoplastic, also termed as a Bio-Agri Thermo Plastic, is applied as a hot liquid encapsulating all gaps avoiding
ingress of suspended particles, air, humidity, etc. The product starts to release its corrosion inhibitor immediately when in
contact with the surface. Once solidified few seconds after the application, the material quickly forms a cocoon around the
substrate sealing it from the environment to provide complete protection.
Protect period is grant for 10yrs and it can be removed at any time without damaging the substrate and without need for
special equipment. After cut by a small knife or stylet, it is easily removed as a shell since it does not adhere to the protected
surface. The material is not classified as harmful or toxic and is VOC free (< 0,06%). It does not contain any petrochemical
products or hydrocarbons. It is designed to provide practical long-term corrosion and contamination control to a wide range of
complicated Industrial metallic structures.
Análisis MP-ICDA (Flujo Multifásico - Evaluación Directa de la Corrosión Interna) en las Tuberías Colectoras
de Bloque 12 y bloque 15 en Petroamazonas EP en Ecuador
MP-ICDA Analysis on Block 12 and Block 15 Gathering Pipelines on Petroamazonas EP in Ecuador
Presented by: Carlos Melo Gonzalez, Petroamazonas EP
In 2010, mechanical integrity personnel started the application of the Direct Assessment (DA) and Inline Inspection
Methodologies (ILI) to establish the baseline assessments for a Pipeline Integrity Program (PIP) for the pipelines of the Blocks
12 and 15 operated by Petroamazonas EP, in Ecuador. There were four preconditions which justified the implementation of
these methodologies: Following the CFR Title 49, Part-195.6, the Blocks 12 and 15, are classified as Unusually Sensitive Areas
(USA’s).
Pressure Testing had been the only Integrity Validation Technique applied to all the pipelines and was performed only after the
construction of the line to verify the weldments installed but NOT on-service defect detection. There are pipelines that have
been operating for more than 20 years without any l integrity assessment beyond the construction hydro test. There have
been several internal corrosion failures of the pipelines of at Blocks 12 and 15 resulting in significant and important economic
losses to the operation.
For the implementation of the DA and ILI methodologies the following Standard Practices were used as guidelines: NACE SP0502 for External Corrosion Direct Assessment, NACE SP-0102 and API-1163 for the Inline Inspection Program and NACE MPICDA (under development by the TG-426) for Internal Corrosion Direct Assessment.
Reparación Permanente de Tuberías Utilizando Materiales Compuestos Conforme con los Estándares Internacionales
Permanent Pipeline Repair Using Composite Materials According with International Standards
Presented by: Thomas Fink, TECNOFINK
The composite materials are a combination of two or more components each one with its distinct mechanical and physical
proprieties (Fiber and Resin). When used separately both components keep their respective characteristics. Although once
united they form a new kind of material with proprieties that are impossible to be achieved with only one of them. Those
particular materials have its mains characteristics in its weight/resistance relation as they are really light and with great
mechanical proprieties.
For instance: Once compared with metals the composite materials present Excellency in weight/resistance relation. Among
other characteristics the use of this material has been growing in various sectors of the industry. One of the offshore industries
major challenges lies in offsetting problems related with the corrosion phenomena. Most of the time stopping the production
line to change equipment and consequently interrupting the process is not an option as that would cause a considerable
production loss. The pipe lines are one of the main components of the oil and gas production system as they transport the
produced oil and also drain indispensable fluids for its processing. Being an aggressive environment the pipe lines struggle with
an external and internal corrosion processes. Thus the defects in the pipes because of corrosion are one of the main reasons of
the production loss as the lines need permanent repairs or even the substitution of defective parts of the pipe lines resulting
many times in the need to shut the production down to execute this kind of actions.
The pipes repairing method are usually worked hot (welding process) and require stopping the production for doing the
required work. As known before this can and most likely will impact directly in the cost of the production. The repair system
using composite materials presents as the solution for these problems mostly because of its total support of the engineering
followed by the parameters within the ASME PCC-2 standard. The repair service can be done without stopping the production
line in pipes with continuous or connections defects and also in cases of thickness loss. In any case scenario the use of
composite materials will at least reduce the stopping time for maintenance increasing thereby the production rate.
Estudio de Integridad Mecánica del Oleoducto 26” Sacha – Lago Agrio de Petroamazonas EP
Study of Mechanical Pipeline Integrity 26 “Sacha - Lago Agrio Petroamazonas EP
Presented by: Fernando Bedón, Petroamazonas EP
Petroamazonas EP, como parte del Programa de Integridad de Ductos, en el año 2014, realizó el Estudio de Integridad
Mecánica del Oleoducto de diámetro 26”, longitud 51 Kilómetros que transporta aproximadamente 300.000 BPPD, desde la
Estación de Bombeo Sacha Central hasta el punto de entrega y fiscalización de Lago Agrio, con el objeto de identificar las
anomalías existentes en éste Oleoducto se realizaron inspecciones directas e indirectas para posteriormente evaluar la
Integridad Mecánica.
Los estudios e inspecciones realizadas fueron:
 Estudio de Resistividades del Derecho de Vía en los tramos enterrados.
 Inspección de las interfaces de suelo con el oleoducto
 Inspección de los tramos aéreos mediante la técnica de onda guiada (LRUT)
 Inspección del sistema de protección catódica mediante relevamiento de potenciales paso a paso (CIS)

Estudio del recubrimiento externo de los tramos enterrados del Oleoducto mediante la técnica indirecta de mapeo de
corrientes (PCM)
Con los datos obtenidos se realizó la evaluación de integridad mecánica, determinando las anomalías más críticas para
posteriormente la programación de los planes de mantenimiento correctivo. Éstos trabajos se desarrollaron siguiendo los
lineamientos de estándares internacionales como: NACE SP-0502 “External Corrosion Direct Assessment”, API 1160 “Managing
System Integrity for Hazardous Liquid Pipelines”.
Propuesta de un Algoritmo para Evaluar la Pérdida de Metal Local Aplicada al Cálculo del Factor de la
Resistencia Remanente
Algorithm Proposal for Assessment Local Metal Loss Applied to Remaining Strength Factor Calculation
Presented by: Walter Francisco Gonzalez Zapatero, Instituto Politécnico Nacional, Grupo de Analisis de Integridad de Ductos
Fitness-for-service assessment is a multi-disciplinary area that has been relevant in recent years. It provides important
information about flaws behavior in components on stream. External local metal loss is a type of damage amply studied,
however complexity in mathematical modeling proposal to its assessment difficult the applicability to determine fitness-forservice. This work presents the modified algorithm, based in numerical integration Simpson´s method, to be used in local metal
loss assessment; it uses simple, significant and sufficient measurements to obtain a Remaining Strength Factor value.
The proposal method is grounded in to consider the local metal loss as a surface crack therefore the algorithm focuses on flaw
longitudinal dimension, as well known it represents the most susceptible condition to failure. Results obtained in assessments
using inspection information from refining process equipment and applying the proposal algorithm, in comparison with results
obtained by methods such as those proposed by API 579-1/ASME FFS-1 and ASME B31G, indicate that the proposal method
presents a reasonable degree of conservatism respect to existent methods. However, this method has a clear advantage
because it has a better applicability during inspection work in external corrosion; therefore allows a better evaluation of the
local metal loss in the component.
Tendencias de PIMS en Sudamérica
PIMS South America Tendencies
Presented by: Francisco Medina, ROSEN
Pipeline operators face many challenges to operate aging assets safely and efficiently. One of the keys to successful asset
management is the implementation of a Pipeline Integrity Management System (PIMS). A Pipeline Integrity Management
System (PIMS) relies on a number of core elements such as people, procedures and methodologies, in addition to data and
software. To be effective, a PIMS must:
 Have clearly defined objectives and Key Performance Indicators (KPIs)
 Be supported by an effective staff organizational structure and training program
 Have good access to accurate and comprehensive pipeline data
 Be aligned with existing operational and maintenance procedures and practices
 Be supported by appropriate software enabling regular review of pipeline risks and outputs that fit client metric
system; these reviews then form the basis for informed decisions to ensure safe and economic pipeline operation
 Be regularly updated to incorporate changes such as regulatory updates, technological improvements and modified
pipeline threats
This paper describes the process a South American pipeline operator undertook to ensure their existing Integrity Management
System was implemented and used in accordance with international standards, guidance and best practice, while providing a
full audit trail for regulators. Key steps to process involved:

A review and gap analysis of existing PIMS elements, with benchmarking against a best practice framework, developed
in accordance with the requirements of recognized international standard (e.g. ASME B31.8S, API 1160, DNV-RP-F116,
ISO 55000).




Implementation of an integrity management software suite, to manage asset related data and operational activities
(including client training).
Collection of asset integrity related data and migration into the Integrity Management software system.
Customization of risk algorithms to the clients pipeline network (threats & consequences), including peer review
risk workshops with the client.
System risk assessment, to identify high risk assets and assist the client in planning operational expenditure and
rehabilitation activites.
Gestión de la integridad de las Tuberías Unpiggable (que no Permiten la Inspección en Línea) y el Desafío de la Probabilidad
de un Diagnóstico de Fallas
Integrity Management of Unpiggable Pipelines and the Challenge of Probability of Failure Assessment
Presented by: Angel Kowalsky, Det Norske Veritas Ltda
Unpiggable pipelines are not rare in onshore pipelines, but relatively common in offshore pipelines. This can be due to several
reasons: pipeline systems with diameter variations, restrictions related to unpiggable elements in the system (valves,
manifolds, end terminals, tees and wyes), thickness variations, large thicknesses, pig launcher/receiver dimensional
restrictions, and so on. Integrity Management manuals and recommended practices indicate that an Integrity Assessment
needs to be performed periodically, based on information collected from inspections and operational records. The most
commonly used inspection method is In Line Inspection, which provides indirect information related to the conditions of the
pipeline wall. Although this is usually not real measurement from the wall, the quantitative information is easily applied in
integrity assessment models based on stresses generated by metal losses, defects and mechanical damages. This can result in
easily achieved numbers representing probabilities of failure, whose confidence level depends basically on the resolution of
the inspection tools and the uncertainties related to the model applied.
When the pipeline is not piggable, the assessment of probability of failure depends on the execution of other inspection
techniques, or on the application of methodologies like Direct Assessment or on performance of pressure tests. Those
alternative methods may not be attractive in some cases, like ultra-deep water pipelines, hence other alternative methods can
be useful. The objective of this paper is to discuss the uncertainties related to Integrity assessment of pipelines when other
data than those from ILI are used. Modelling using operational data, comparison with similar systems, expert assessment,
failure rates and monitoring data are examples of alternative information sources that can be used. The Bayesian Network
approach is presented as a promising tool to deal with uncertainties related to the methodologies, and how they interact
between each other.
Análisis Comparado de Los Sistemas de Mapeo de Corrosión por Arreglo de Fase Vs. Los Sistemas de Ult
Comparative Analysis of the Corrosion Mapping Systems by Phase-fixing vs. the Ult Systems
Presented by: Myrian Anzola, Tecsud
La necesidad de detectar y analizar corrosión en grandes áreas, con alta precisión, ha impulsado a asociar las nuevas técnicas
de inspección por arreglo de fase a sensores y escaners de específicamente desarrollados para  tal fin. Mediante este
articulo se busca comparar la eficacia y eficiencia de los sistemas de inspección de corrosión por técnicas tradicionales de
medición de espesores y de ultrasonido convencional asociados a escaners básicos.
Se ha detectado que la utilización de técnicas de medición de espesores y de ultrasonido convencional para la inspección de
corrosión no deben ser denominadas MAPEO DE CORROSION ya que en su mayoría presentan varios problemas técnicos tales
como deslizamiento de las probetas, poca cobertura de las áreas inspeccionadas, dificultades de acople, erosión de la
superficie, entre otros.
Es así como se busca demostrar que algunas tecnologías de inspección por ultrasonido de arreglo de fase acopladas a el
sistema adecuado de inspección de corrosión de acuerdo con el elemento inspeccionado pueden llegar a ser mucho más
efectivas y precisas, pueden detector problemas delaminaciones, son más fáciles de utilizar, dan una información más
completa de la realidad de la condición interna de la pared y, por lo tanto, pueden ser consideradas técnicas de MAPEO DE
CORROSIÓN
Evaluación Externa Directa de Tuberías Mediante Escáneres Laser 3D
External Pipeline Direct Evaluation through 3D Laser Scanners
Presented by: Mark Maizonnasse, Creaform
Hoy en día, las leyes y códigos empujan a los propietarios de ductos a buscar procesos más rentables y precisos para
inspeccionar la integridad de la red de ductos. Tales procesos incluyen la evaluación externa directa de zonas críticas de
tuberías mediante escáneres 3D.
Los avances significativos de los escáneres 3D en la inspección de tuberías se reflejan en el proceso de inspección, como por
ejemplo: tiempos de medición más cortos y generación de reportes disponibles directamente en sitio. Al mismo tiempo los
escáneres 3D ofrecen más opciones de inspección al usuario como construir una base de datos con la evolución de la
corrosión, correlación ILI y análisis por elementos finitos. El siguiente artículo explicara los conceptos básicos de los escáneres
laser 3D y las cualidades técnicas de medición con respecto a la exactitud y repetibilidad. Los últimos mejoramientos serán
explorados con respecto a la evaluación externa directa.
¿Realiza Realmente una Gestión de la Integridad de su Tubería?
Are You Really Managing Your Pipeline Integrity?
Presented by: Chris Rodgerson, Penspen
A Pipeline Integrity Management System (PIMS) can come in many guises but they should all have one goal, to safeguard the
integrity of a pipeline so that the pipeline can fulfil its role for its operational life. To achieve this goal it needs to be clear that
the role of a pipeline is to effectively transport a product from one location to another with the minimum of risk to people, the
environment, and the pipeline operator’s reputation and business interests. The measure of effectiveness of a pipeline will
vary from pipeline to pipeline. For example a pipeline may need to achieve a certain availability, specified flow volume, or be
commercially profitable. We want to safeguard pipeline integrity so that the pipeline fulfils its role. There are numerous tasks
that are required to maintain pipeline integrity. Management of these tasks is necessary so that the appropriate tasks are
carried out at the intended time and the outcome of these tasks is assessed and acted on.
A PIMS documents the arrangements that are in place to achieve day-to-day and long term pipeline integrity. In order to
achieve a robust PIMS the events that can prevent a pipeline fulfilling its role should be identified and understood so that
mitigating measures can be implemented. This stage often identifies known pipeline hazards which can result in a loss of
containment event such as:
 Internal corrosion;
 Accidental damage;
 External corrosion;
 Malicious damage:
 Structural failure;
 Human error.
 Fatigue failure;
But this is not the whole picture. There are a multitude of other events that should be considered which may not directly result
in a loss of containment but have the potential to result in disruption to flow through a pipeline. Examples of such events are:
 Failure of the SCADA system;
 Loss of communications;
 Precautionary cessation of production due to:
o wayward vessels;
o weather;
o failure of a safety device;
 Regulatory intervention;
 Commercial decisions;
 Exceeding the design life;

Failure of supporting pipeline system (e.g. water injection system).
Effective integrity management of a pipeline involves more than managing inspection, maintenance and remedial activities; it
involves all the peripheral activities that facilitate a pipeline fulfilling its role successfully. This paper will look at these
peripheral activities and what should be considered to support proper pipeline integrity management.
Análisis de los Riesgos Cuantitativos de un Gasoducto en la Exportación de gas Natural
Quantitative Risk Analysis of a Pipeline to Natural Gas Exportation
Presented by: Silvana Arias Robayo, Tecnicontrol - Bureau Veritas Colombia S.A
A Quantitative Risk Analysis is a study in which principal threats and damage mechanism that generate risks to the system are
identified in order to propose mitigation actions for those risks. The QRA assesses whether or not the gas pipeline poses a
manageable/tolerable risk for the population located at the objective zone. We carried out an assessment of a natural gas
pipeline that has both onshore and offshore parts. The offshore part has a liquefaction process and a storage unit for the
natural gas.
In order to evaluate the QRA methodology’s performance, it is necessary to determine segments and inventory groups.
Segmentation is necessaryto establish which damage mechanism is credible for each segment and also to determine the
failure frequency for each segment. The definition of inventory groups is required in order to establish the inventory released
in case of a leak/rupture scenario in a specific point, and finally to estimate the consequence of the event.
The review of the damage mechanisms (integrity threats) that are present in this type of system is performed according to the
existing normativity and regulations that apply to this type of pipeline and transported fluid. Damage mechanisms include:
external and internal corrosion, stress corrosion cracking, manufacture defects, mechanical damage, climate and natural
forces, third party damage, among others.
The estimation of the frequencies is performed with the review of different databases (of generic failure frequencies) with the
objective of determining the relevant ones for this study; the generic frequencies are ajusted according to a Segment
Modification Factor, which is in turn based on a susceptibility analysis of each damage mechanism. The goal is to obtain a more
accurate failure frequency for the particular conditions the pipeline system and the reduction factors for: design factor, wall
thickness and depth of cover.
The Consequence determination is carried out by using a special software that calculates the effects of a fluid loss in the
containment for each possible scenario, and the risk levels are calculated by using other special software. The results are
shown in a FN curve to finally establish the risk levels in an operative risk matrix.
Aplicación y Control de Calidad de la Instalación en Campo de Mantas Termocontráctiles Como Recubrimiento Externo Para
Juntas Soldables en la Construcción de Sistemas de Tuberías
Application and Quality Control of Field Installation in Campo de Mantas Termocontráctiles as External Coating for Weld
Joints in the Construction of Pipeline Systems
Presented by: Daniel Ona Rivas, Constructora Norberto Odebrecht
Normalmente la empresa propietaria del sistema de tubería especificará los productos que se aplicarán sobre las juntas
soldables de la tubería. Los estudios del sitio para el tendido, las condiciones de operación de la tubería y la compatibilidad con
el recubrimiento exterior de la tubería impulsarán la selección de los recubrimientos apropiados para la vida útil deseada del
sistema integral de tubería. La especificación escrita del proyecto es el documento que dirige la aplicación o instalación del
recubrimiento y esta debe ser cumplida y seguida a cabalidad.
Como recubrimiento para las juntas soldables las mantas termocontraíbles son una buena opción debido a su menor tiempo
para su instalación comparado con epoxy líquidos sobre juntas de soldadura, lo que se refleja en una mejor productividad,
además los tiempos de inspección y control de calidad son optimizados ya que no son necesario en mantas medición de
espesores en película húmeda y seca. La instalación de mantas termocontraíbles en Ecuador no es muy común y varios
profesionales de la construcción tienen desconocimiento sobre la instalación, control de calidad, pruebas, y calificación de
instaladores de mantas, es por esta razón y muchas más que se hace necesario exponer para el conocimiento de todos sobre
esta línea de inspección y control en la integridad de ductos.
MARCO TEORICO
Las Mantas Termocontraíbles tienen un lado de polietileno entrecruzado y un adhesivo activado por calor, la cual se coloca de
tal forma que queda en contacto con la superficie. Cuando las mantas se calientan, el calor suministrado al lado exterior de la
manta junto con el sustrato precalentado provoca que se derrita la capa de adhesivo interior de la manta. La dinámica
generada por la contracción del material impulsa el adhesivo fundido de baja viscosidad hacia el perfil superficial y lo mantiene
en su lugar durante el enfriamiento. En resumen se pretende establecer los criterios y orientaciones como método de
inspección y control de la calidad para la aplicación del revestimiento externo anticorrosivo en las uniones de soldadura con
Mantas Termocontraíbles, siguiendo las recomendaciones del fabricante y de normas aplicables.
Aerosol Resistente a la Erosión de Nueva Generación Aplicado a los Recubrimientos Internos para Tuberías y Equipos de
Proceso
New Generation Erosion Resistant Spray Applied Internal Linings for Pipelines and Process Equipment
Presented by: Pedro Ruiz, Belzona
Erosion is by definition a process in which a material is worn away by a mechanical process. In industry erosion protection is a
never ending battle. Erosion damage of vessels and pipelines can lead to catastrophic failure and is considered a high risk
factor. Effects of corrosion on metallic surfaces can be predicted by models and compensated in designs with substrate
corrosion allowance, cathodic protection or coatings. Erosion is more difficult to predict because it is highly dependent on the
feed stream solid entrainment, velocity and angle. This paper will focus specifically on the protection of process vessels and
pipelines through the use of new novel coating technology.
In the past two decades coating technology has evolved well beyond corrosion and environmental protection. Coatings today
are used for protection from extreme chemical environments, corrosion, and even aggressive erosion. In many cases the right
coating can simplify the metallurgical requirements for the equipment as the coating takes on the harsh process environment
therefore reducing the need for the use of exotic alloys. The emergence of new technologies in liquid applied coating and the
equipment used to apply them is making liquid applied epoxy coatings a widely accepted alternative to fusion bonded coatings
(FBE), corrosion inhibitors, claddings and exotic alloys. These coating are being specified and accepted as standard practice by
major oil and gas companies for onshore and offshore equipment protection. With proper mitigation of erosion damage risks
resulting from material loss can be mitigated with use of coatings.
Implementacion del Proceso ILI (In Line Inspection) en Coampos Maduros En Selva
Implementation of ILI (In Line Inspection) process, in Mature Fields in Forest
Presented by: Andres Rodriguez, GIE Peru
La inspección interna ILI mediante herramientas del tipo MFL (Magnetic Flux Leakage) fue capaz de identificar y cuantificar casi
medio millón de anomalías de pérdida de metal en los 61km de longitud de un ducto con más de 35 años de servicio
ininterrumpido en la selva peruana. Esta gran cantidad de anomalías presentes derivó en un Plan de Reparaciones que prioriza
tanto las profundidades máximas de penetración, como las densidades y agrupaciones de estas anomalías en función de la
longitud.
Debido a la gran cantidad de anomalías reportadas este plan de Reparaciones inicial era prácticamente imposible de
implementarse sin cambiar menos del 35% del ducto. De esta manera, la operadora decidió priorizar aquellas secciones del
ducto más comprometidas realizando cambios de cañería, sin embargo la existencia de innumerables defectos remanentes de
profundidades superiores a las definidas para realizar cambios de tubería, de acuerdo a los manuales vigentes y aplicables por
la operadora, generaron la preocupación de los responsables de mantenimiento ante la inminencia de fugas en los sectores
identificados.
Se desarrollan de esta manera, partiendo de los datos de la inspección interna ILI, diferentes modelos de priorización de zonas
y luego de identificación de anomalías puntuales que presentaron a lo largo de la vida en servicio velocidades de crecimiento
mayores que las adyacentes. Estos fenómenos de crecimiento puntual fueron identificados y singularizados con la finalidad de
generar planes específicos de priorización que contemplen la verificación directa de la anomalía, ajustes del modelo
desarrollado y acciones correctivas que incluyan reparaciones puntuales y acciones mitigativas.
Este proceso de priorización se hizo abarcatívo y se llevó adelante en 4 ductos, que suman un total de 293km discurriendo en
la selva amazónica, generando la movilización de distintas cuadrillas de verificación directa que levantaron datos para el ajuste
del modelo, planteando un Nuevo esquema de seguridad ante el conocimiento de las profundidades reales de las anomalías
medidas en campo.
Implementación y Resultados de un Sistema de Gestión de la Integridad de Tuberías
Implementation and Results of a Pipeline Integrity Management System
Presented by: Paulo Serna, Repsol Ecuador BU
In the oil and gas industry, management of the integrity of pipeline has grown to become a serious business because of the
overall consequence of pipeline failure: economic, social, environmental, and possibly legal. In Block 16 the BU Ecuador, has
developed a system of pipeline integrity management, through which all the information and activities of different areas of the
company are integrated, seeking to reduce the probability of failure of a pipeline, and reduce the consequence of a spill.
system, which was implemented from the year 2009, together with the development of an Integrity Management Software
has helped to define susceptible areas in the event of a spill, determine the threats that increase the probability of failure of a
pipeline and its potential consequence, establish a baseline of the condition of the pipes, data analysis and risk assessments
whose results thus permits a precise differentiation between necessary action and distinctive features which do not require
treatment at least in the short terms. The benefits achieved are reflected in a substantial increase in the level of pipeline
integrity management, and a reduction of the rate of pipeline failure.
Deformación interna de una Tubería de Líquidos Debido al Gas Atrapado entre el Refuerzo Metálico Soldado (manga) y la
pared de la Tubería
Internal Deformation of 20in Fluid Pipeline Due to Gas Trapped Between Welded Metallic Reinforcement (sleeve) and the
Pipe’s Wall
Presented by: Fernando Eguiguren, Repsol Ecuador BU
The pipe section was located in the Amazon in the province of Orellana, Ecuador. The dent was initially discovered in 2010
after an internal maintenance pig that was used to clean the line arrived damaged at the pig receiver. At that time, the nature
and location of the obstruction was not known. In December of 2011, an internal inspection was performed, using a Pipeline
Data Logger tool, to identify the location of the obstruction. The inspection revealed that the obstruction was located beneath
a welded sleeve repair at Kilometer Post (KP) 10 + 123. The pipe was excavated at the identified location and the external
surfaces of the pipe were examined. There was no external evidence, however, to indicate that the sleeve or pipe were
damaged.
The portion of the pipeline that contained the dent is comprised of 20-inch diameter by 0.312-inch wall thickness, API 5L Grade
X60 line pipe steel. The line pipe was installed in 1996 and was manufactured by Wilson Industries, Inc. The maximum
allowable operating pressure (MAOP) of thepipeline is 675 psig, which corresponds to 36% of the specified minimum yield
strength (SMYS). The maximum operating pressure of the pipeline is 400 psig, which corresponds to 21% of SMYS (59% MAOP).
The pipeline was originally coated with a three-layer polypropylene, but was recently repaired and the sleeve was coated using
Powercrete R120 epoxy.
The media that is transported in the line consists of a mixture of oil, water, and gas. The media has a water cut of 95% and
contains approximately 8 mol% carbon dioxide and 12 ppm of hydrogen sulfide. An approximate 12-foot long crate that
contained the pipe section with the sleeve and dent was shipped to a contractor for analysis. The objectives of the analysis
were to determine the cause of the dent and identify any contributing factors.
The following steps were performed for this analysis. Section was removed and the pipe section was visually examined and rephotographed.
Dimensional measurements including coating and wall thickness measurements at the 12:00, 3:00, 6:00, and 9:00 o’clock
orientations, circumference measurements, and diameter measurements were performed on the upstream and downstream
ends of the pipe section.
A window was cut from the sleeve, using carbon arc gouging, to expose the external surface of the pipe at the dent location.
Prior to removing the window from the sleeve, a hole was drilled into the sleeve at the center of the dent in order to release
any pressurized liquids/gases trapped between the sleeve and the pipe. Both the drilling of the sleeve and the sleeve removal
were photographically recorded using a digital video recorder. After the sleeve cutout was removed, the external surfaces of
the dent were visually examined and photographed. Due to the absence of any mechanical damage and corrosion on the
external pipe surface at the dent, the remainder of the sleeve was removed from the pipe section. The surfaces of the
pipe section that were beneath the sleeve were visually examined and photographed.
A window that contained the dent was torch cut from the pipe section in order to examine the internal surfaces. The internal
surfaces of the dent were examined and photographed. Next, a digital map of the external and internal surfaces of the pipe at
the dent was performed using a FARO® 3D laser scanner. The internal and external surfaces of the pipe at the dent location
were cleaned using a soft-bristled brush and methanol in preparation for magnetic particle inspection (MPI). MPI was then
performed on the internal and external surfaces of the pipe section at the dent location.
A circumferential cross-section was removed through linear indications identified on the internal surface of the dent for
metallurgical analysis. The cross-section was mounted, polished, and etched. Light photomicrographs were taken to document
the morphology of the indications and the microstructure of the pipe steel. Base metal samples were removed from the pipe
section for mechanical testing (duplicate tensile and full Charpy impact toughness transition curve). A steel sample was also
removed for chemical analysis to determine the composition of the pipe.
The results of the metallurgical analyses indicate that the dent formed after the sleeve was installed on the pipeline. Evidence
to support this conclusion includes the observation that the damage to the pipe from welding the longitudinal seam of the
sleeve appeared to deviate from a straight line in the vicinity of the dent. The longitudinal seam on the sleeve was straight,
however. Finally, the dent was not centered beneath the sleeve. Had the sleeve been installed because of the presence of a
dent, the sleeve would have been centered over the dent.
The dent likely formed due to a build-up of pressurized gas, likely hydrogen, in the annular space between the external surface
of the pipe and the sleeve. The determination that the gas was likely hydrogen is based upon identical failures experienced and
documented by another operator. This operator had multiple failures that involved the collapse of carrier pipe beneath a
welded sleeve repair. Trapped gas, similar to that observed for Repsol, was found within the annular space between the sleeve
and the pipe in all of their failures. The gas was sampled and analyzed and was determined to be pure hydrogen.
Analisis de la Causa Raiz de Falla en una Linea de Fluido Multifasico
Root Cause Analysis of a Fluid Line Failure
Presented by: Clarien Guerrero, Corporación para la Investigación de la Corrosión
A raíz de una falla presentada se realiza el análisis de un segmento de tubería que transporta fluido multifásico (crudo-aguagas). Basados en la aplicación de la metodología CIC de análisis de Falla, se consideró el planteamiento de las cuatro hipótesis
más probables acorde con la condición de la tubería: Material Fuera de Especificación, Procesos de Corrosión Externa,
Procesos de Erosión, y Procesos de Corrosión Interna. Para generar las evidencias que validan o descartan a cada una de las
hipótesis como posibles causales de falla, se realizó un paquete de ensayos destructivos y no destructivos para conocer las
condiciones químicas y mecánicas del material y la susceptibilidad del mismo a experimentar fenómenos corrosivos.
Una vez obtenidos y analizados los resultados de los diferentes ensayos, las hipótesis Material Fuera de Especificación, y
Procesos de Corrosión Externa, fueron descartadas como posibles causales del deterioro interno evidenciado. Los resultados
de los ensayos destructivos, no destructivos y análisis detallado de la información mediante herramientas software, permiten
asegurar que el fluido transportado se clasifica como de Corrosividad Severa, y que la Línea presentó desgaste en la superficie.
Interna, desencadenado como resultado de un proceso de Corrosión-Erosión asociado a la presencia de CO2 disuelto en el gas
y sólidos respectivamente. En todo caso, el análisis de causa raíz busca contribuir en la elaboración de planes de acción
centrados en destinar los mayors esfuerzos y recursos en la raíz de la falla que generen impacto positivo en la gestión de
mantenimiento.
Especificación de Recubrimientos de Tuberías – Acerca de los Criterios de Diseños Apropiados
Specifying Pipeline Coatings - What About Appropriate Design Criteria
Presented by: E. Broesder, STOPAQ
With pipeline constructions, coatings are often considered to be the weakest link with respect to external corrosion control.
National and international mandatory regulations are in place for external corrosion control. Materials selection and coatings
are the first line of defence against external corrosion. Because perfect coatings are not feasible, CP must be used in
conjunction with coatings.
A specific type of coating may not be suitable for the often varying circumstances encountered at the entire track of a pipeline;
specific environments require a specific set of requirements. Properties of a specific type of coating are tested under
laboratory conditions to evaluate if they meet the requirements as written in various standards. However, in the design stage
you should ask yourself: “Have all relevant properties been tested?” and “Are the properties tested for of any relevance?”
The criteria used in the design stage for selection of coatings and cathodic protection systems will have serious consequences
during the operational life time of the pipeline.
In the presentation several examples from literature resources and from case histories are shown. In some of these case
histories, the use of improper selection criteria in the design phase has led to costly repairs during construction or during
operation of the pipeline. From these examples several conclusions can be drawn, e.g.
 The material properties as e.g. given by suppliers, do not per se guarantee long-lasting corrosion prevention in specific
circumstances.
 Conditions and results of laboratory testing are not per se representative for real practical situations.
 Testing in real practical situations contributes to development of appropriate selection criteria for pipeline coatings.
Situaciones no Esperadas que Pueden Amenazar la Integridad en Oleoductos Durante la Ejecución de Inspecciones Internas y
Procesos de Limpieza
Unexpected situations that May Threaten Pipeline Integrity During the Execution of Internal Inspections and Cleaning
Processes
Presented by: German Gaibor, OCP Ecuador S.A.
En el proceso de evaluación de integridad de oleoductos una de las herramientas importantes muy frecuentemente utilizadas
son las inspecciones internas con herramientas inteligentes. Este documento ayudara a visualizar y prever algunas de las
situaciones no esperadas que pueden suceder previo, durante y después de un programa de inspecciones internas.
Las situaciones que se expondrán son fundamentadas en experiencias propias vividas en los programas de inspección con
herramientas inteligentes tanto en oleoductos costa adentro así como también costa afuera, con herramientas caliper, MFL y
ultrasonido con métodos de propulsión por flujo y autopropulsadas cable umbilical.
Las inspecciones internas con herramientas inteligentes comúnmente conocidas como “ILI” sin desmerecer que son muy
importantes como uno de los componentes que ayudan a identificar anomalías que pueden afectar la integridad de los
oleoductos, estas en si pueden constituirse en una amenaza para la integridad si no se consideran muchos aspectos entre los
cuales: la selección adecuada de la tecnología, condiciones internas desconocidas de los oleoductos, presiones y temperaturas
de trabajo, grado de desgaste de las herramientas de inspección, fluido de trabajo, entre otros que se trataran en el desarrollo
de esta exposición.
SESIONES DE SOFTWARE/TERCEROS/FUERZAS NATURALES
SOFTWARE/THIRD PARTY/NATURAL FORCES SESSIONS
Varaiables Que Se Deben Tomar en un Modelo de Consecuencias Para Oleoductos
Variables to be taken on a Consequences Model for Pipelines
Presented by: Ivonne Vinocuna, OCP Ecuador
OCP ECUADOR S.A como parte de su mejora continua y su compromiso con el ambiente, ha definido e implementado un
modelo que permite estimar, económicamente, las consecuencias que enfrenta un oleoducto de transporte de crudo en caso
de un derrame. Las variables empleadas y su interacción se fundamentan tanto en un modelo básico de “Impacto Total en el
Negocio” desarrollado por John Woodhouse así como también en la experiencia que ha tenido la compañía durante los dos
eventos de fuerza mayor que implicaron rotura del oleoducto. Bajo este escenario el modelo desarrollado por OCP agrupa las
consecuencias en tres categorías: Costos por Pérdida de Producción, Costos de Reparación y Costos por Afectación al
Ecosistema. Los Costos por Pérdida de Producción engloban las pérdidas económicas que la compañía atraviesa por el tiempo
fuera de operación y se estiman en función al Precio del Producto, la Reducción de Flujo y el Tiempo de Reparación. Por otro
lado los Costos de Reparación incluyen todos los posibles gastos asociados a la reparación de la tubería, los cuales varían
dependiendo de la severidad de la falla.
Finalmente los Costos por Afectación al Ecosistema, son los más sensibles al momento de estimarlos, debido principalmente a
la ausencia de información, sin embargo la legislación ambiental ecuatoriana brinda una base sólida que permite hacer una
estimación bastante aproximada de los mismos cuyo cálculo se basa en varias actividades encaminadas a la restauración del
recurso natural afectado. La revisión de los costos está sujeta a la inflación que vive el país, por lo que la estimación de la
consecuencia se la realiza anualmente, expresada finalmente en dólares por evento (rotura).
Sistema de Informacion Para la Gestion de Integridad en Gasoductos – Sigmi
Management Information System for the Pipeline Integrity Management - Sigmi
Presented by: Maria Salas Cabezas, Corporación para la Investigación de la Corrosión
Durante el proceso de implementación del plan de gestión de integridad para un sistema de gasoductos en Colombia, se
desarrolló una herramienta informática que centraliza la información técnica y operacional para la valoración de modelo de
riesgo, la generación de los planes de acción y el aseguramiento. Esta herramienta denominada Sistema de Información para la
Gestión y Manejo de Integridad – SIGMI, ha sido diseñada para el Ingeniero de Integridad considerando los lineamientos del
ciclo de mejora continuo (Planear, Hacer ,Verificar y Actuar).
SIGMI está orientado a facilitar la gestión de integridad de sistemas de transporte de gas natural, mediante la implementación
articulada de cuatro (4) módulos: Línea Base, Valoración del Riesgo, Planes de Acción y Aseguramiento. El módulo de Línea
Base constituye un sistema de información que recopila y favorece el análisis del compendio de información así como la
visualización de la información geo-referenciada, el uso de controles gráficos y análisis multiparámetros. En el módulo de
Valoración del Riesgo se realiza el cálculo de la probabilidad y consecuencias de un potencial evento de falla a la integridad, lo
anterior, mediante la aplicación de la lógica de algoritmos desarrollados para la evaluación del riesgo asociado a las veintidós
(22) amenazas clasificadas en nueve (9) categorías, según los códigos ASME B31.8S y NTC 5747. La valoración de los riesgos
que afectan la.integridad se realiza tubo a tubo, permitiendo especificar los planes de acción para las zonas de mayor criticidad
del sistema. El modulo de Planes de Acción asigna las actividades de monitoreo, mitigación y control del riesgo para cada una
de las amenazas evaluadas, estos planes de acción se catalogan en preventivos, predictivos y correctivos. El cuarto módulo
corresponde al Aseguramiento y seguimiento de la gestión, a través de indicadores de desempeño de la acciones ejecutadas y
del sistema en general.
Utilización de la Tecnología de Inspección Interna INS/GPS Para Identificar áreas de Desplazamiento de la Tubería
Using the Internal Inspection Technology INS / GPS to identify areas of Pipeline displacement
Presented by: Ariel Balsamo, NDT
Las tuberías están sometidas a esfuerzos de flexión generados por la presión del suelo. Estos esfuerzos tienden a curvar la
tubería, generando tensión en la parte exterior de la curva y compresión en la parte interior. La excesiva compresión puede
generar arrugas o buckles mientras que la excesiva tensión puede llevar a la ruptura directa de la tubería. Para ayudar en la
identificación de estas áreas que concentran altos valores de Deformación Global por Flexión (Global Strain en inglés) se
utilizan las herramientas de inspección interna con tecnología INS/GPS. Estas herramientas permiten no sólo el mapeo en XYZ
de la tubería, sino el cálculo de las Curvaturas y la Deformación Global por Flexión en segmentos de una determinada longitud.
Al comparar estos valores segmento a segmento entre dos o más inspecciones, se pueden identificar áreas con incrementos en
el tiempo, es decir donde el terreno está ejerciendo una presión sobre la tubería, desplazándola de su ubicación original.
Integración de Análisis de Riesgo Cuantitativo en la Integridad de Tuberías con Evaluaciones de Trayectoria de Derrames y
Riesgos Geológicos
Integration of Quantitative Risk Analysis in Pipeline Integrity With Geohazard and Spill Trajectory Assessments
Presented by: Alvaro Escobar, Tory Technologies, Inc.
Each year around the world thousands of oil barrels are spilled on ground involving millions of dollars in clean up and repairs
apart from injuries and fatalities due to different causes that threat the pipelines. Therefore, there is a real need in assessing
quantitatively the risks associated to the transportation of oil and gas by pipeline in order to determine the best options for
mitigating those risk with maintenance and replacement programs.
Quantitative Risk Analysis (QRA) is a scientific methodology that was developed to quantitatively demonstrate the potential
risk associated with any given threat based on the Probability of occurrence and the potential consequences of the event.
Quantitative Risk Analysis (QRA) uses Monte Carlo simulation, which is similar to “what if” evaluation, generating multiple
number of possible scenarios but with different combination of the variables included. Some variables from different
disciplines are so complex that requires separate process.
This paper presents how a typical QRA evaluation is conducted, considering not only the basic and traditional variables of the
incident causes, but also including two additional factors related to spill path modeling and geohazard evaluation. In order to
include these two additional factors, it is required to perform several simulations and case studies. Such analyses are required
to generate a proper input for the QRA.
The paper will also address all the QRA key factors impacting risk analysis in pipelines, including: material properties yield
strength), loads imposed on the line (internal pressure and overpressure and third party impact), manufacturing defects
(number and size of defects), construction defects, line condition (defect growth rates), operation and maintenance, which all
together represent almost 75% of the variables to be evaluated. Geohazard and other causes represent the other 25% of
incident causes and the variables more complex involved require separate analysis. Finally the results would not be completed
without a spill trajectory analysis to determine the consequences beyond the pipeline right of way as it happens in the real
life.
Evaluacion de la Probabilidad de Falla de un Oleoducto Sometido a Amenazas Naturales
Evaluation of the Probability of Failure of a Pipeline Submitted to Natural Hazards
Presented by: Gualberto Chiriboga, OCP Ecuador
En la Región Andina y particularmente en el Ecuador, los fenómenos naturales constituyen la principal amenaza para la
integridad de los oleoductos. El Oleoducto de Crudos Pesados (OCP) es una tubería enterrada en la mayor parte de su trazado,
que atraviesa el país desde la Región Amazónica al Este (aproximadamente 300m.s.n.m), asciende la Cordillera de los Andes a
una altitud de 4060msnm en su parte más alta y desciende hasta el Océano Pacífico al Oeste, atravesando aproximadamente
unos 485Km de su territorio.
Durante su trazado, el OCP cruza una diversidad de zonas fisiográficas, geotécnicas, sísmicas, volcánicas, climáticas etc. lo que
hace que esté sometido a los efectos de diversas amenazas naturales, siendo las más recurrentes y peligrosas: los
deslizamientos, sismos, eventos volcánicos, pérdida de tapada en los cruces de ríos principales y erosión del DDV. OCP Ecuador
S.A. ha desarrollado una metodología para la evaluación de la probabilidad de falla del oleoducto, que integra los valores de
probabilidad de falla por cada amenaza natural a la que está expuesto en cada segmento del mismo. El propósito de este
documento técnico es presentar esta metodología que ha permitido prevenir daños en la tubería y mejorar la gestión de los
trabajos a lo largo del Derecho de Vía.
SESIONES DE SOFTWARE/CONTROL DE LA CORROSIÓN
SOFTWARE/CORROSION CONTROL SESSIONS
Gestion de Indicaciones de Herramientas Inerciales
Inertial Indications Management Tools
Presented by: Pedro Jaya, OCP Ecuador
El plan de integridad desarrollado e implementado en OCP ha identificado a las fuerzas Naturales como la principal amenaza
real que puede afectar a la tubería. De las múltiples herramientas para el monitoreo de esta amenaza, en nuestro caso la
herramienta conocida como mapeo inercial ha proporcionado información que luego de ser analizada se presenta como
posibles anomalías e indicaciones que se complementan con el resto de metodologías incrementando la posibilidad de
anticiparnos a un evento no deseado. En esta presentación se intenta mostrar cómo se ha integrado esa información con un
sinnúmero de metodologías desde una simple verificación con detector de metales en campo hasta una modelación de
interacción suelo – tubería mediante elementos finitos y como esto ha ayudado en la toma de decisiones sobre las obras,
monitoreo, inspecciones, etc. , para cuidar la integridad del oleoducto.
SESIONES DE CONTROL DE LA CORROSIÓN
CORROSION CONTROL SESSIONS
Control de la Corrosión en Plantas con Altas Concentraciones de Sulfuro de Hidrógeno (H2S)
Control of Corrosion in Facilities with High Concentrations of H2S
Presented by: Franklin Casa, Andes Petroleum Ecuador Ltd
H2S concentrations increased in the different areas of the operation: wells, pipelines and surface facilities. This has forced to
change the control strategy by attacking the problem in the wells with continuous biocide injection, in pipelines by optimizing
pigging activities reinforced with chemical injection and finally at surface equipment by implementing an aggressive cleaning
program combined with batches. What is the origin of the increase is a question that cannot be answered yet, but efforts are
being done to clear this issue. This paper presents the following information:
 Variations in the H2S levels along the time.
 Measures taken to control the concentrations.
 Results of control techniques.


Lessons learned.
Next steps to face the problem.
Evaluación de la Condición de las Tuberías de Acero y Tubos Cilíndricos de Concreto Pretensado (PCCP) en Guayaquil
(Ecuador)
Condition Assessment of Steel and PCCP Pipelines in Quayaquil-Ecuador
Presented by: Juan Isaza, Pure Technologies Ltd
International Water Services (Guayaquil) Interagua C. Ltda hereinafter referred to as Interagua; is a private company in charge
of the operation and maintenance of the potable water, sewer and drainage systems of the City of Guayaquil, Ecuador. The
potable water production reaches 370 million cubic meters of water per year approximately, which serves more than 2.5
million people.
Interagua required immediate action to improve the current condition of their potable water pipelines in order to guarantee
the future serviceability of the system. The main defies which generated weaknesses along different location of the system
were:
• Quality problems related to the manufacture of the PCCP pipes
• The absence of proper protection measures and the lack of the right amount of interior cement mortar lining on some pipes
• The impossibility to affect the service
• The different loads transferred to the pipelines due to the continuous growth of the city.
In accordance to the abovementioned concerns, Pure Technologies was retained to perform a comprehensive Condition
Assessment program in the Northern Water Transmission Mains of the City of Guayaquil during the year 2011. SCOPE OF THE
PROJECT: Northern Water Transmission Mains. The northern water system includes an 1800-1500 mm pipeline that has 15.2
Km of steel section and 10 Km of PCCP pipeline, which contains a section of GRP. This section has been in service for about 19
years. It also includes another PCCP section, 1050 mm in diameter that has been operating for 60 years, with 14.5 Km
approximately.
A third pipeline is made of lined steel, 1250 mm in diameter and about 48 years in service and nearly 25.6 Km long. The scope
of the project consisted of the condition assessment of this three pipeline sections using a range of patented inspection tools
and technologies mainly based on acoustic and electromagnetic basics, together with an engineering evaluation. The program
implemented by Pure Technologies was useful to detect and locate weaknesses along the pipelines such as leakage for all of
the pipelines; cause of damages in the inner lining and pipe wall condition in the steel section; and possible areas of distress on
the 1800-1500 mm PCCP pipes (PCCP results in verification stage).
Diseño y Aplicación de un Programa de Tratamiento para Prevenir la Corrosión Interna en una Tubería de Perú
Design and Application of a Treatment Program to Prevent Internal Corrosion in a Peruvian Pipeline
Presented by: Jeffrey Kramer, BWA Water Additives
Pipeline integrity is a major concern for the oil and gas industry. Effective pipeline integrity programs must employ a
combination of external and internal corrosion protection. External corrosion is typically controlled using cathodic protection
while chemical inhibitors are typically used to control internal corrosion. This paper describes the internal corrosion control
program at Petroperu’s oil pipeline over a five year period. This pipeline brings oil from the Peruvian jungle to the coast at
Bayovar. The pipeline is divided into three sections; North, Section I and Section II, and each section presents different
challenges. The chemical treatment consisted of the continuous injection of a corrosion inhibitor and batch treatments with
biocides.
Corrosion rates are measured via corrosion probes installed at various locations along the pipeline. Sulfate-reducing bacteria
counts and iron levels are also monitored. Corrosion rates, sulfate-reducing bacteria counts and iron levels in the different
pipeline sections over time are presented. Correlations are made between inhibitor dose, biocide type and dosage, and
corrosion rates. Recommendations to improve the chemical treatment program are presented and discussed.
Impacto del Marraneo en la Película del Inhibidor de la Corrosión
Influence of Pigging in Corrosion Inhibitor Film in Pipelines
Presented by: Paul Cabadiana, Andes Petroleum Ecuador Ltd.
Pigging is considered a routine activity in the production operations with high importance for corrosion control. A proper
internal cleaning is always required as a previous task to start a chemical treatment of corrosion. But, along the service of the
pipeline, it is possible that this cleaning removes also the passive layer formed by the corrosion inhibitor producing an adverse
effect in the corrosion control and leaving the metal unprotected to be attacked by the media. Evidence of the effects of
cleaning in the corrosion inhibitor film is searched in the pipelines as a way to establish an equilibrium for an optimal action of
the chemicals and the cleaning tools.
This study has the following objectives:
 Determine the interaction of pigging and corrosion inhibitor film by performing measures of chemical concentration
before during and after the cleaning operation.
 Determine an optimal combination of inhibitor- pigging, including a proper frequency of cleaning and chemical
injection.
Salto de Corriente de Proteccion Catodica en Lineas de Transporte de Agua de Formacion
Jump Current Cathodic Protection in Transportation Lines of Water Formations
Presented by: Franklin Sanchez, Repsol Ecuador BU
Para los Sistemas de Protección Catódica del Bloque 16 se utilizan juntas de aislamiento en los extremos de las líneas
protegidas, como unas de las recomendaciones del documento NACE SP0286-2007 “Electrical Isolation of Cathodically
Protected Pipelines”, para segmentar, independizar y aislar eléctricamente, tramos de líneas que están integrados a un
Sistema, de estructuras que no se deseen proteger, básicamente, las tuberías de proceso de facilidades.
Un grupo de estas líneas de transporte son aquellas que conducen agua de formación desde las Plantas de Deshidratación
hacia las plataformas donde se reinyecta este fluido, que por sus características fisicoquímicas, genera un medio propicio para
que la corriente de Protección Catódica captada por las estructuras de las facilidades, lo escoja como camino de menor
resistencia para “saltar” hacia las líneas a través de las juntas aislantes.
El fenómeno que ocurre por el salto de corriente se asocia con la aparición de una celda galvánica en la que el electrodo
negativo es la zona interna de la línea contigua a la junta aislante, y el electrodo positivo (anódico), el área interna de la línea
aérea adyacente a la misma junta aislante mencionada. Se genera por tanto pérdida de iones metálicos desde el electrodo
positivo hacia el negativo, con la consecuente pérdida de metal que por la Ley de Faraday, se aproxima a un desgaste teórico
de 9.13 kilogramos de acero por cada amperio de corriente de salto. Es evidentemente un alto riesgo el que se maneja en
estos sitios, ya que el desgaste de la tubería en la zona de facilidades, puede derivar en fugas o estallidos que permitan la
liberación del agua presurizada a aproximadamente 1000 psi, con temperaturas de operación de alrededor de los 93°C.
Podrían existir algunas alternativas de solución para evitar el deterioro señalado, algunas de las cuales las sugiere NACE
SP0286-2007, sin embargo es preciso verificar en cada caso su aplicabilidad y posibilidad de implementarse en campo. Estas
soluciones podrán relacionarse con el increment de la resistencia del circuito, con la reducción de la corriente de fuga o con
ambas. Es además imperativa la calibración continua de los potenciales de polarización de Protección Catódica, la selección
apropiada de un criterio de protección, la determinación de la magnitud y dirección de la corriente de fuga –con la definición
de zonas de mayor riesgo– y la verificación de espesores de las líneas en las cercanías de las juntas aislantes.
Uso de 3LPP Como Revestimiento en Tuberías de Alta Temperatura
Using 3LPP as Coating in High Temperature Hoses
Presented by: Lorena Velasco, Repsol Ecuador BU
The metal pipe´s coating is the main barrier of defense against corrosion, proper selection based on real use conditions
(environmental and operationals) is the key to ensuring the mechanical integrity of such pipes. One of the main variables to
analyze is the permeability and thickness of polypropylene and type of adhesive used. The morphology of damage (3LPP)
presented in this case study, based on field observations and laboratory tests indicates that the detachment of the coating was
due to complete degradation of the primer FBE in operating conditions of high temperature (100°C) and humidity (98%).
Also, the correct application of the coating is essential to ensure long-term effectiveness. The main problem for field
installation 3LPP coatings is related to the lining of the joints between pipe sections that are devoid of coating to facilitate
welding operations. It is also important to avoid over blasting during surface preparation which will prevent proper adhesion to
the metal surface FBE. It is important to consider that the failure to service one of the layers constituting the 3LPP coating
(epoxy, adhesive or PP) will cause complete system failure. The failure of the first layer of epoxy the most catastrophic.