1st IPSUS Progress Meeting, HASYLAB @ DESY, Hamburg 2007 Microstructure characterisation of Dissimilar Al to Steel Friction Stir Welds Aleksander Kostka MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG MATERIALS DIAGNOSTICS AND STEEL TECHNOLOGY Outline ¾ Introduction ¾ Materials ¾ Current results ¾ Planned work ¾ Results example Max-Planck-Insitut für Eisenforschung GmbH MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Motivation Friction Stir Welding – FSW 9 9 9 9 Solid state process No arc or reflection Low distortion Environment friendly FSW by RIFTEC Gmbf Difficulties of Al-alloy to Steel welds: 9 Complex brittle intermetallics 9 Considerable magnitude of hallenges: C thermal stresses 9 New welding technology 9 Lack of microstructure information Introduction MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Scientific objectives of VI-IPSUS ¾ Viscous flow and diffusion processes in high speed FSW ¾ Recrystallisation Kinetics in FSW ¾ Precipitation Phenomena in FSW ¾ Phase formation/transformation in FSW Introduction MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Running tasks ¾ Task 1.1 Base material procurement & characterization ¾ Task 1.4 Preliminary mechanical and metallurgical testing ¾ Task 3.2 Precipitation and recrystallization phenomena in FSW ¾ Task 4.1 Deformation Mechanisms Introduction MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Production of TWIP steels ¾ Casting ¾ Hot rolling followed by air cooling ¾ Cutting ¾ Cold rolling ¾ Heat treatment Base materials MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Chemical composition Sample %C %Al %Mn %Si %Ti V60/124 TRIP 0.1 - 1.52 1.46 0.03 V60/125 TWIP 0.05 2.85 24.7 3.02 - V60/126 TWIP 0.63 - 22.0 - - V60/124 TRIP V60/125 TWIP V60/126 TWIP Base material characterization MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Electron Back Scattered Diffraction 111 001 101 V60/126 TWIP Average grain size (diameter) 48µm 8 200 µm Base material characterization MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Electron Back Scattered Diffraction 111 001 V60/126 TWIP 101 Presence of nano-twins 50 µm Specific grain boundary definition strongly necesesary! Base material characterization MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Electron Back Scattered Diffraction Using definition of boundaries between identified grains (Correspond to twin boundary 60°) Base material characterization V60/126 TWIP Grains misorientation MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Electron Back Scattered Diffraction subgrains nanotwins When all boundaries are taken to account Base material characterization V60/126 TWIP Grains misorientation MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Electron Back Scattered Diffraction 111 001 101 V60/125 TWIP Average grain size (diameter) 64µm 8 200 µm Base material characterization MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Nearest future 9 Continuation of the SEM/EBSD analyze of the microstructure of the TWIP and TRIP samples - Grain size evaluation (in a proper way) - Texture analyse 9 Preliminary mechanical and metallurgical testing: - Analyze of the deformation mechanisms (EBSD, TEM) - Fracture analyze (EBSD, TEM) 9 Precipitation and recrystallization phenomena in FSW - EBSD measurements and analyse - Specimens preparation for TEM … more characterization MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG EMAT, Antwerp, Belgium End of part one Friction Stir Welding High-strength Steel and Aluminium alloy Rodrigo S. Coelho1 A. Kostka1, S. Sheikhi2, J. Dos Santos2, A. Pyzalla1 1 Max-Planck-Insitut für Eisenforschung GmbH, Düsseldorf, Germany 2 GKSS Research Centre GmbH, Geesthacht, Germany MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Motivation of weld light metal Necessity alloys to steel: 9 Reduce weight 9 Minimize fuel consumption 9 Restrict emissions Corvette Z06 Light-Weight Structures Aluminium alloys + Steel Introduction MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Difficulties of Al-alloy to Steel welds: 9 Complex brittle intermetallics 9 Considerable magnitude of thermal stresses Friction Stir Welding – FSW 9 9 9 9 Solid state process No arc or reflection Low distortion Environment friendly Introduction Challenges: GKSS FSW tricept® 805 workstation Motivation 9 New welding technology 9 Lack of microstructure information MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG The aim ¾ Microstructure characterization: Systematic investigations of the microstructure evolution associated with joining of dissimilar materials (Al-alloys to steel) ¾ Relationship between mechanical properties microstructure Introduction and MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG FRICTION STIR WELDING Single overlap Al-alloy to Steel Rotation Speed (rpm) Travel Speed (mm/sec) Down-force (kN) 1600 6 5 Characterization Mechanical properties Hardness test Shear test Microstructure OM SEM - EBSD TEM Experimental details 4 mm MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG FRICTION STIR WELD Optical microscopy: 9 Complex weld zones Microstructure MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG FRICTION STIR WELD Scanning electron microscopy - SEM AA6181-T4 Retreating side Advancing side ZStE340 400 µm Microstructure MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Mix-SZ ZStE340 Fe-TMAZ Fe-HAZ Fe-BM 10 µm Microstructure MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG ZStE340 Mix-SZ 2 µm Microstructure MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG ZStE340 Mix-SZ 4 µm Microstructure MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG ZStE340 Mix-SZ 1 µm Microstructure MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Electron Back Scattered Diffraction ¾ Material flow ¾ Grain size analysis ¾ Local texture 111 001 1 101 AA6181-T4 2 3 ZStE340 Al Texture Analysis Fe alpha MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Electron Back Scattered Diffraction ¾ Material flow 111 AA6181-T4 2 3 001 101 ZStE340 Iron - Alpha Aluminium 2 3 100 µm 100 µm Texture Analysis MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Electron Back Scattered Diffraction ¾ Grain size analysis ¾ Local texture 001 1 9.3 µm 111 Al-SZ 101 AA6181-T4 Al-TMAZ ZStE340 Al-HAZ Al-BM Al-BM Cube recrystallization texture Texture Analysis 150 µm 16 µm MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Electron Back Scattered Diffraction 9.3 µm AA6181-T4 2 ZStE340 ¾ Strong texture variation ¾ Uniform grain size 111 001 Al-SZ 101 AA6181-T4 ¾ Strong grain size gradient ZStE340 5.7 µm Fe-BM γ - fibre {111}║ND texture Texture Analysis Fe-BM 100 µm 0.3 µm MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG 10 µm Microstructure MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG STEM HAADF: material flow, precipitation 500 nm 500 nm ¾ Mechanical mixing ¾ Steel material flow ¾ Precipitation process occurs in the aluminium alloy Microstructure MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG STEM HAADF: intermetallic compound 500 nm 100 nm ¾ Formation of elliptical grains, characteristic for formation of FeAl3 ¾ Cracking of the intermetallics at the mixing zone Microstructure MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG TEM BF: fine grained intermetallic phase 1.17 Å 2.14 Å 3.79 Å 2.02 Å 2.43 Å 1.46 Å 1.43 Å 0.76 Å 200 nm 200 nm Fe2 Al5 Fe alpha ¾ Intermetallic phase – steel interface Microstructure MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Micro Hardness Test AA6181-T4 Mix-SZ Fe-HAZ Fe-TMAZ 800 µm ZStE340 Al-SZ ZStE340 - Steel MECHANICAL PROPERTIES MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Micro Hardness Test ZStE340 - Steel AA6181-T4 AA6181-T4 800 µm ZStE340 MECHANICAL PROPERTIES MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Overlap Shear Test Maximum loading AA6181-T4 FSW Al-steel 4330 N 3318 N 73% efficient MECHANICAL PROPERTIES MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Fractography Analysis 2 3 1 MECHANICAL PROPERTIES MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Fractography Analysis 1 0.5 mm 50 µm MECHANICAL PROPERTIES MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Fractography Analysis 1 0.5 mm 50 µm MECHANICAL PROPERTIES MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Fractography Analysis 3 Equiaxed dimples - Ductile fracture - Steel particles 200 µm MECHANICAL PROPERTIES MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Fractography Analysis 2 Equiaxed dimples - Ductile fracture - Steel particles 50 µm 1 mm MECHANICAL PROPERTIES MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG Conclusions 9 The welding parameters chosen ensure high quality joints since: - High surface quality - Absence of macro cracks after welding process 9 The FSW process cause: - Recovery/recrystallization in the stir-welded zone - Significant strengthening of the stir-welded zone due to formation of fine-grained microstructures in steel - Presence of the brittle intermetallic Fe2Al5 phase at the Al-Fe interface 9 The welding characterization proves: - The intermetallics are responsible for failure in tensile deformation - Ultimate tensile strength equal to 75% with respect to the base material AA6181-T4 MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG
© Copyright 2024 ExpyDoc