REGATEC 2015 | Barcelona, Spain Process for cost-effective Removal of Sulfur and Oxygen from Biomethane on Iron Oxide Sorbents Toni Raabe (a), Sven Kureti (b), Ronny Erler (a), Hartmut Krause (c) (a) DBI - Gastechnologisches Institut gGmbH Freiberg; (b) Technische Universität Bergakademie Freiberg; Background: Increasing injection of biomethane in natural gas grid (c) DBI Gas- und Umwelttechnik GmbH Methodology Requirements with respect to oxygen: Screening of different commercially available iron-based adsorbents DVGW-worksheets G 260 and G 262 (3 vol-% in dry areas of the low pressure gas grid, 10 vppm in high pressure gas grid) [1,2] Physio-chemical characterization (average grain size, specific surface, porosity, gross and pure density, average porediameter, chemical analysis, thermogravimetric analysis) EASEE-gas CBP 2005-011-02 (10 vppm O2 daily average) for medium und high pressure gas grid [3] Investigation of break-through behaviour in laboratory scale (Fig. 4) Optimization of process parameters Resulting problems: Mathematical modeling of the process Corrosion respectively geo-chemical reactions in moist areas of gas infrastructure, especially pore and aquifer underground gas storage [4-6] Blocking of pores and channels in underground gas storage (formation of elemental sulfur due to oxidation of hydrogen sulfide, Fig. 1) Figure 4: Adsorption lab equipment Experimental results Investigation of break-through behaviour (O2 on sulfidized iron oxide) with following parameters: - Superficial gas velocity, inlet concentration of oxygen, moisture and temperature (Fig. 5) - Paramters for desulfurization were held constant (comparability of results) Figure 1: Rhomboidal sulfur crystals on stainless steel [7] How does oxygen get into biogas? Substrate input Biogas purification - Desulfurization (e.g. in-situ desulfurization with air, drip-body systems, iron-based adsorbents) - Separation of carbon dioxide (e.g. pressure water scrubbing (Fig. 2), Genosorb® process) vol-% CH4 0.109 0.233 CO2 46.328 99.755 N2 0.0043 0.009 O2 0.0014 0.000 m³/h vol-% CH4 0.109 0.073 CO2 46.328 31.726 N2 78.737 53.921 O2 20.85 14.278 m³/h vol-% N2 0.2631 63.751 O2 0.1496 36.249 drying absorber biogas plant m³/h stripper O2-content of biomethane: 300…8.000 vppm Figure 5: Break-through loading of oxygen XDB,O2 on sulfidized iron oxide over superficial gas velocity u, inlet concentration of oxygen cO2,0, moisture φ and temperature T in different combination [8] Significant loading of the adsorbent with hydrogen sulfide is required for efficient oxygen removal m³/h vol-% CH4 52.42 52.42 CO2 46.37 N2 O2 m³/h vol-% CH4 52.311 96.922 46.37 CO2 0.0331 1.01 1.01 N2 0.20 0.20 O2 m³/h vol-% CH4 52.311 96.922 0.061 CO2 0.0331 0.061 Residence time in fixed bed should be high (chemical reaction rate-determining step, eq. (3), (4)) 1.2731 2.367 N2 1.2731 2.367 0.3496 0.650 O2 0.3496 0.650 Relative gas humidity of about 15 % is necessary (consumption during regeneration, eq. (4)) Temperature is the most important influential parameter on break-through curve (activation energy) Figure 2: Sankey diagram of O2 contamination during pressure water scrubbing (ChemCad model) [8] Fieldtest Simultaneous removal of H2S and O2 from biogas was successfully tested in a pilot plant [14] (Fig. 6) How can oxygen be removed? Chemisorption on copper with H2 Catalytic removal with LPG cH2S / vppm Chemisorption on sulfidized iron oxides Technology description: oxygen-chemisorption on sulfidized iron oxides Desulfurization on iron-based sorbents, such as α-Fe2O3 or α-FeOOH, state of the art since 1950s [9-12]: 0 (1) (2) 24 48 72 96 120 144 168 192 t/h 0 6 12 18 24 30 t/h 36 42 48 54 Figure 6: Break-though curves of sorbents in pilot plant [14] ─ raw biogas – sorbent A ─ raw biogas – sorbent B -- pure biogas – sorbent A -- pure biogas – sorbent B Regeneration by addition of air (1…2 vol-%) into raw gas • Fe2S3 + 3/2 O2 → Fe2O3 + 3/8 S8 • 4 FeS + 3 O2 + 2 H2O → 4 FeOOH + ½ S8 cO2 / vppm Methane oxidation on Rh, Pt-catalyst • Fe2O3 + 3 H2S → Fe2S3 + 3 H2O • 2 FeOOH + 3 H2S → 2 FeS + ⅛ S8 + 4 H2O 1000 900 800 700 600 500 400 300 200 100 0 1000 900 800 700 600 500 400 300 200 100 0 (3) (4) Summary and outlook New process: separation of these two process steps in different columns and removal of residual oxygen from biomethane (Fig. 3) Verification of basic suitability of the procedure for oxygen removal below 10 vppm (EASEE-gas [3]) Identification of optimum process parameters Problem: usually higher O2-concentration in biomethane than with H2S-content in raw gas removable biomethane O2-free Current useful application: pressure swing adsorption or amine scrubber Further optimization of sorbents for O2 conversion as well as process and reactor design necessary H2Sremoval O2removal Biogas plant Literature CO2 - removal CO2-free gas / laden with O2 raw biogas Figure 3: Simultaneous removal of H2S and O2 during biogas purification process [8] Contact DBI - Gastechnologisches Institut gGmbH Freiberg Halsbrücker Straße 34 | D-09599 Freiberg | Germany [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] DVGW, Gasbeschaffenheit 2013 (G 260). DVGW, Nutzung von Gasen aus regenerativen Quellen in der öffentlichen Gasversorgung 2011 (G 262). EASEE-gas, Harmonisation of Natural Gas Quality 2005 (2005-001/02). U. Gronemann, R. Forster, J. Wallbrecht, H. Schlerkmann, gwf Gas|Erdgas 2010, 151 (4), 244. T. Raabe, R. Erler, H. Krause, gwf Gas|Erdgas 2013, 154 (11), 854. T. Muschalle, M. Amro, Influence of oxygen impurities on underground gas storage and surface equipment, DGMK research report, Vol. 753, DGMK, Hamburg 2013. T. Raabe, A. Fiedler, R. Erler, H. Krause, energie | wasser-praxis 2014 (September), 56. T. Raabe, Untersuchungen eisenhaltiger Gasreinigungsmasse in Bezug auf Sauerstoff- und Schwefelwasserstoffentfernung, Masterarbeit, Technische Universität Bergakademie Freiberg 2012. A. L. Kohl, F. C. Riesenfeld, Gas Purification, 2nd ed., Gulf Publishing Company, Houston, Texas 1974. Verfahren der Gasaufbereitung: Erdgas Brenngas Synthesegas (Eds: J. Schmidt), VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1970. G. Drautzburg, gwf Gas|Erdgas 1985, 126 (1), 36. A. A. Davydov, K. T. Chuang, A. R. Sanger, J. Phys. Chem. B 1998, 102 (24), 4745. A. A. Davydov, Molecular spectroscopy of oxide catalyst surfaces, Wiley-VCH, Chichester [u.a.] 2003. T. Raabe et al., gwf Gas|Erdgas 2014, 155 (11), 828. phone: +49 (0) 3731-4195-310 fax: +49 (0) 3731-4195-319 web: www.dbi-gti.de e-mail: [email protected]
© Copyright 2025 ExpyDoc