Detector - PhotonicSweden

Development and perspectives of high repetition
rate attosecond sources
C.L. Arnold1, A. Harth1, M. Miranda1, P. Rudawski1, J. Guo1, C.
M. Heyl1, E.W. Larsen1, E. Lorek1, E. Mårsel1, A. Mikkelsen1,
E. Månsson1, M. Gisselbrecht1, S. Ristinma-Sörensen1,
J. Matyschok2, O. Prochnow2, T. Binhammer2, U. Morgner2
J. Mauritsson1, A. L’Huillier1
1Department
2VENTEON
of Physics, Lund university, Sweden
Laser Technologies GmbH, Hertzstr. 1b, 30827 Garbsen, Germany
* Email: [email protected]
Characteristic time and length scale
10 8
10 10
10 4
10 6
Atom
10 2
100
C. elegans
Virus
10 2
10 20
Length / m
Building
Mouse
Galaxi
Small
molecule
Human
Bacteria
Macromolecule
Drosophila
Time / s
10 15
Attosecond
pulses
10 12
Picosecond
laser
Femtosecond
laser
10 4
10 8
Flash lamp
Q-switched
laser
High speed
camera
Free electron
laser
Synchrotron
100
101
Camera
10 2
1012
Telescope
Overview
• Generation of attosecond pulses
• Motivation for high-repetition rate attosecond sources
• Few-cycle, CEP-stable OPCPA laser source
• High-repetition rate attosecond source
• Conclusion and outlook
HHG – a strong field effect
2. Acceleration
Laser field
2
1
3
Electron trajectories
3. Recombination
Return Energy (UP)
1. Tunneling
Cut-off ~IP+3.2 UP
Short
Long
Return Time (T1)
Corkum, Phys. Rev. Lett., 71:1994 (1993).
Schafer et al, Phys. Rev. Lett., 70:1599 (1993).
Lewenstein et al, Phys. Rev. A, 49:2117 (1994).
Time <-> Frequency
XUV
E-Field and trajectories
E(t)
”Inversion symmetry”
or
”Electron interferences”
or
”Pulse-to-pulse interferences”
XUV
T/2
Time (fs)
=> Odd harmonics.
2w
Principle of an attosecond science experiment
Train of attosecond pulses
or single attosecond pulse
Femtosecond
laser source
Detector
Time
High-order
harmonic
generation in
a gas
Applications:
Frequency
-
Attosecond
spectroscopy
-
Time-resolved
electron
microscopy
-
...
Discrete high-order harmonics
or continuous XUV spectrum
Motivation for high repetition rate
attosecond source
Attosecond science – low vs. high repetition rate
Probing single ionization
Probing electron
correlation
Detector
Detector
By coutesy of
J.M. Dahlström
Klünder et al., Phys. Rev. Lett., 106:143002 (2011).
Guenot et al., Phys. Rev. A, 85:053424 (2012).
Månsson et al, Nature Phys. 10:207 (2014).
Attosecond science – low vs. high repetition rate
Probing single ionization
Probing electron
correlation
2d- Correlation map
Detector
Detector
Detector
Energy
Klünder et al., Phys. Rev. Lett., 106:143002 (2011).
Guenot et al., Phys. Rev. A, 85:053424 (2012).
Kinetic energy sum
Count
Photo-electron
spectrum
Low kinetic energy
Månsson et al, Nature Phys. 10:207 (2014).
Applications benefitting from a high-repetition rate
attosecond source
Correlations in multi-electronic systems
- Coincidence detection schemes
- 3d electron momentum
Attosecond time-resolved electron
microscopy - attoPEEM
Detector
Coincidence
detection
Nano-structures,
Nano-devices
M.I. Stockman et al., Nature Photon. 1:539—544 (2007).
Mikkelsen et al, Rev. Sci. Instrum., 80:123703 (2009).
Mårsell et al, Ann. Phys., 525:162 (2013).
Principle of photoemission electron microscopy
Image formation in the Focus IS-PEEM.
• Electrons are photo-emitted
from the surface and
accelerated by a 10-15 kV
voltage.
• Zero, one or two projective
lenses can be used.
• The signal is amplified and
projected onto a fluorescent
screen.
• Resolution down to 20 nm.
Development of an OPCPA based, high
repetition rate attosecond source
CPA vs. OPCPA
Chirped pulse amplification
Pump
From
oscillator
Compressor
Stretcher
Amplification
crystal
Optical parametric chirped pulse amplification
From
oscillator
Compressor
Idler
Stretcher
Nonlinear
crystal
Short pulse laser development has reached at a crossroads CPA vs. OPCPA technology
CPA
• Leading technology since 25 years for
shortest and most energetic pulses
•
•
•
•
Challenges:
Thermal management
Thermal lensing
Gain-bandwidth narrowing
Reaching below 20fs is complicated
•
•
•
•
Benefits:
Very well developed technology
Commercially explored
Easy to achieve very high pulse energy
Simple Q-switch pump-laser technology
Solutions:
• Cryo cooling
• Intra- and extra-cavity spectral shaping
OPCPA
• Demonstrated in 1992, but it took until
recently for the technology to mature
Challenges:
• Elaborate pump laser technology: often
Yb-based, all-diode pumped fiber or thindisk CPA lasers; usually not commercially
available.
• Synchronization between pump and
signal pulses
•
•
•
•
•
Benefits:
Energy transfer between pump and seed
pulses is nonlinear
• No energy stored in the crystal
Easily scalable to high repetition rate
Broad amplification spectrum
Wavelength not fixed to specific materials
Compact design, good CEP stability
High-repetition rate OPCPA
80 MHz
200 kHz
Fiber based pump
laser @1030nm
27 µJ
100 µJ
115 µJ
44 µJ
Ultra-broadband,
80 MHz,
2 nJ
CEP-stable
Oscillator
Two-stage NOPA
80 MHz
200 kHz
f:2f
10 µJ, < 7 fs, 200 @kHz
J. Matyschok et al., Opt. Express 21: 29656 (2013).
Ultrashort pulse characterization
Spectrometer
SHG
crystal
V.V. Lozovoy, Opt. Lett., 29(7):775 (2004).
M. Miranda et al., Opt. Express, 20(1):688 (2012).
M. Miranda et al., Opt. Express, 20(17): 18732 (2012).
Ultrashort pulse characterization
General optimization problem: minimize an error function
“measured”
guess spectral phase
until 2D trace is
reproduced
minimize rms error
Compare chirped mirror compressors
Old chirped mirror set
New chirped mirror set
Commercialization
of the d-scan
High-repetition rate HHG
>10 µJ, <10 fs,
200 kHz – 2 MHz
CEP
Challenges for HHG at high repetiton rate
• Low pulse energy
• Tight focusing
• Large XUV divergence
• High gas pressure required
• Good efficiency is tough to obtain
High-repetition rate HHG
>10 µJ, <10 fs,
200 kHz – 2 MHz
CEP dependent HHG
CEP dependent HHG
Region I: Change from even
to odd harmonic order
?
Region III: Odd order harmonics, but
amplitude changes
Region II: Harmonics are split and
shifted - complex behavior
?
Model: Multi-pulse interference
Short driving pulse
𝝋𝑪𝑬𝑶
Transmission
Analogy to a multipath interferometer
0
2p
Saleh, Teich, Fundamentals of Photonics, Wiley (2007).
Time
Attosecond pulse train
4p
6p
j
CEP dependent HHG
Measurement
Simulation
Clear CEP effect in different regions
Conclusion and outlook
• OPCPA laser technology allows for high power and highrepetition rate, CEP-stable, few-cycle laser sources
• High repetition rate attosecond source was realized
• Perfect conditions for
– Studying correlations in multi-electronic systems
– Attosecond time-resolved electron microscopy
• Laser upgrade is being conducted right now
• New developments:
– MIR OPCPA laser based on thin-disk pump technology
– Soft-X-ray attosecond source for core-hole spectroscopy and
element specific, time-resolved imaging
Atto-PEEM @ 200 kHz
CPA 1kHz
@1 kHz
@200 kHz
Exposure
time
400 s
Resolution
< 900 nm
x 10
x3
30 s
< 350 nm
OPCPA 200kHz
Lund group for Attosecond Science
A. L’Huillier, C.L. Arnold, J. Mauritsson,
M. Miranda, A. Harth, E.W. Larsen,
C. Heyl, E. Lorek, P. Rudawski, C. Guo,
A. Losquin
Synchrotron Radiation Physics
M. Gisselbrecht, E. Månsson, A. Mikkelsen, E. Mårsell, S. Sörensen
VENTEON and University of Hannover
T. Binhammer, O. Prochnow, J. Matyschok, U. Morgner