Photopharmacology: Optical Control of Activity

Photopharmacology: Optical
Control of Activity
Andrea Palazzolo
Literature Seminar
06.07.14
Antibiotic Resistance
Serial Inhibition
Polypharmacology
06.07.14
Drug Cocktail
Fischbach , M.A.; Walsh, C.T. Science 325, 1089-93 (2009).
Dar, A. C.; Das, T. K.; Shokat K. M.; Cagan, R. L. Nature 486, 80-4 (2012).
National Institute of Allergy and Infectious Disease. http://www.niaid.nih.gov/.
2
Ideal Solution: Reversible Control
06.07.14
Velma, W. A.; Szymanski, W.; Feringa, B. L. JACS. 136, 2178-91, (2014).
3
Light Activation in Biological Systems
Restoration of Visual Response in Blind Mice
Optical Control of:
Neurons
Kramer, R. H. et al. Neuron. 75, 271-82, (2012).
Deisseroth, K., Williams, S. C. P. Nature Methods. 8, 26-90, (2011).
06.07.14 Trauner, D.; Isacoff, E. Y. et al. Nature Neuroscience. 4, 507-16, (2013).
Receptors
4
The Principle of Photopharmacology
Precisely
targeted
biological
effect
Deactivation of
photopharmaceutical
agent
Light Activation of Photopharmaceutical Agents
Diarylethenes
Change in:
Conformational Flexibility
Electronic Properties
Azobenzenes
Change in:
Geometry
Dipole Moment
5
06.07.14
Velma, W. A.; Szymanski, W.; Feringa, B. L. JACS. 136, 2178-91, (2014).
Designing a Photopharmaceitical Agent
A photoswitch bound to a
pharmacophore
Prevents
A photoswitch acts as a
linker.
binding in one
state.
06.07.14
Velma, W. A.; Szymanski, W.; Feringa, B. L. JACS. 136, 2178-91, (2014).
Isomerization
changes the
distance between the
ligands
6
Designing a Photopharmaceitical Agent
Quinolone Antibiotics
Photoswitchable Quinolone Antibiotics
06.07.14
Velma, W. A.; van der Berg, J. P.; Hansen, M.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. Nat. Chem. 5, 924-928, (2013).
7
Switching Between Photoisomers
Ideal Conditions:
No Effect
Activity
Threshold
Saturation
Saturation
Point
Experimentally:
Velma, W. A.; Szymanski, W.; Feringa, B. L. JACS. 136, 2178-91, (2014).
06.07.14 Velma, W. A.; van der Berg, J. P.; Hansen, M.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. Nat. Chem. 5, 924-928, (2013).
8
Photoswitching of Most Promising Candidate
O
O
OH
N
N
N
O
Before
Irradiation
After
Irradiation at
365nm
cis
Wavelength (nm)
06.07.14
Absorbance at 350nm
Absorbance (AU)
trans
Switching
Switching Cycles
Cycles
Velma, W. A.; van der Berg, J. P.; Hansen, M.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. Nat. Chem. 5, 924-928, (2013).
9
Binary Activity Profile
O
O
OH
N
N
N
O
Growth Curves of E. coli (CS1652)
Before
06.07.14
Irradiation
After
Irradiation at 365nm
Velma, W. A.; van der Berg, J. P.; Hansen, M.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. Nat. Chem. 5, 924-928, (2013).
10
Binary Activity Profile
After Incubation at 37oC
06.07.14
Velma, W. A.; van der Berg, J. P.; Hansen, M.; Szymanski, W.; Driessen, A. J. M.; Feringa, B. L. Nat. Chem. 5, 924-928, (2013).
11
Thermal Inactivation
Thermal cis-trans isomerization Growth Curves of E. coli
(37oC, 21 x 10-6M in water)
06.07.14
(40 µg/ml of inactive, non-irradiated compound 2)
Velma, W. A.; Szymanski, W.; Feringa, B. L. JACS. 136, 2178-91, (2014).
12
Inactivation of Photopharmaceutical Agents
A
B
C
Inactivation via
irradiation
D
E
F
G
Thermal
Inactivation
H
I
J
06.07.14
Velma, W. A.; Szymanski, W.; Feringa, B. L. JACS. 136, 2178-91, (2014).
13
Ideal Conditions for Photopharmacology
Will not applicable without these ideal conditions
Activation
with light of low cellular toxicity
Ideally deep-penetrating
Controlled Inactivation
Additional complications with two different molecules
Metabolic
06.07.14
stability, water-soluble, toxicity
Velma, W. A.; Szymanski, W.; Feringa, B. L. JACS. 136, 2178-91, (2014).
14
Outlook: Are we there yet?
In principal, attractive for treatment of localized
diseases/infections
Reduce off-target toxicity of cancer therapeutics
Minimal development in the area beyond proof
of concept
Photoswitches must be effectively incorporated
with high control of activity
In Summary: No
06.07.14
Velma, W. A.; Szymanski, W.; Feringa, B. L. JACS. 136, 2178-91, (2014).
15