Frequency Response Lesson #12 Small Signal Equivalent Circuits for the BJT Section 8.4-8.8 BME 373 Electronics II – J.Schesser 22 Frequency Response • • • • • The gain of an amplifier is affected by the capacitance associated with its circuit. This capacitance reduces the gain in both the low and high frequency ranges of operation. The Bode Plot may look something like this where there is a low frequency band, a midfrequency band and a high frequency band. The reduction of gain in the low frequency band is due to the coupling and bypass capacitors selected. They are essentially short circuits in the mid and high bands. The reduction of gain in the high frequency band is due to the internal capacitance of the amplifying device, e.g., BJT, FET, etc.. This capacitance is represented by capacitors in the small signal equivalent circuit for these devices. They are essentially open circuits in the low and mid bands. First, let’s continue to study the small signal equivalent circuits. Mid-Frequency Band Low Frequency Band BME 373 Electronics II – J.Schesser High Frequency Band 23 Small Signal Equivalent Circuits and Parameters for the BJT rπ-β Model • When the AC Portion of the input is small around the Q point (<<VT in value) then we can approximate the operation of transistor by an equivalent circuit consisting of a resistor, rπ=VT/IBQ and a current source, βib, where ib is the small signal component of the base current: o B o C βib rπ o E • A more thorough Equivalent Circuit may be needed to specify the performance of the BJT BME 373 Electronics II – J.Schesser 24 Two-Port Devices and the Hybrid Model • Generalized model for two-port devices + v1 i1 i2 + Two-port Device i2 h21i1 h22 v2 - 11 input relationship; h11 v1 h11i1 h12 v2 v2 v1 i1 22 output relationship; h22 input resistance with output shorted-circuited v2 0 i2 v2 output conductance with input open-circuited i1 0 21 forward transfer relationship; h21 i2 i1 forward current transfer (or gain) with output short-circuited v2 0 (short-ciruit current gain) 12 reverse transfer relationship; h12 v1 v2 reverse voltage transfer (or gain) with input open-circuited i1 0 (reverse-open-circuit voltage gain) BME 373 Electronics II – J.Schesser 25 Hybrid-Parameter Model for the Common Emitter BJT B ic ib + hie vbe - + hrevce - C + hfeib hoe vce - vbe hieib hre vce ic h feib hoe vce E E The parameters defined by this equivalent circuit as usually provided by transistor manufacturers to describe the performance of the BJT. For example, and hfe are typically given in BJT data sheets. BME 373 Electronics II – J.Schesser 26 Hybrid-π Model for the BJT • Another model typically specified by BJT manufacturers and is used for frequency analysis • Includes – Resistance to model the base-emitter junction, the base to collector junction, and the collector to emitter path – Capacitance to model base-emitter junction and the base to collector junction – A dependent (forward) current source in the collector BME 373 Electronics II – J.Schesser 27 Hybrid-π Model for the BJT (Continued) B rx Cμ + vπ E • • • • • • • • - C rπ rμ Cπ gmvπ ro E rx called the base spreading resistance and represents the resistance of the base-emitter junction rπ represents the dynamic resistance for small signal analysis and depends on the Q-point of the design - rπ=VT/IBQ rμ represents the feedback from the collector to the base and is related to the hybrid parameter hre= rπ /(rπ+ rμ) ro represents the resistance from the collector to the emitter and is related to the hybrid parameter hoe ≈ 1/ ro and is also related to the EARLY Voltage by VA/ICQ Cμ is the depletion capacitance of the collector-base junction Cπ is the capacitance of the base-emitter junction and depends on the Q-point gmvπ is the amplification factor and is equal to β ib. Transition frequency, ft = β /[2πrπ(Cμ+Cπ)], when |Ic/Ib| is unity when the collector is grounded for ac. BME 373 Electronics II – J.Schesser 28 Example • The Hybrid-π parameters of a 2N2222A: – – – – – – – – gm r I CQ 10m 0.385 S, 26m VT 225 585 , g m .385 Q-point => ICQ=10 mA, VCEQ= 10V r Assume VT = 26 mV r 585 -4 1.5 M, hre 4 10 Average β => 225 ro 1 5 k ~ 40 k hre => 4x10-4 hoe hoe => 25 mS ~ 200 mS ro AVG 22.5 k, Cμ => 8 pF 225 C 8pF C 6 2 r f ft => 300 MHz (transition frequency) 2 585 300 10 t 196 pF Collector-base time constant: 12 12 150 10 150 10 rxCμ=150 x 10-12 19 rx ft C 2 r (C C ) BME 373 Electronics II – J.Schesser 8 29 Analysis of CE at High Frequencies The Hybrid-π parameters : VCC 15V RC 510 C2 1uF C1 1uF Rs 50 + RE - 0 L RB 10k vn Vs 1V +- Q1 Q2N2222A CE 100uF 1.3k 0 0 VEE –15V RS B rx + vs vin RB + vπ - E – – – + R – 510 vout – 0 – – – – Cμ Q-point => ICQ=10 mA, VCEQ= 10V Assume VT = 26 mV gm=.385 S rx=19 Ω rπ=585 Ω ro=22.5k Ω rμ=1.5 M Ω Cπ=196pF Cμ=8pF C rπ rμ Cπ gmvπ ro RC RL E BME 373 Electronics II – J.Schesser 30 Example Using the Miller Effect 8p B 19 50 vs + + vin vπ 10k r in Miller r out Miller C in Miller C out Miller + vo - C + vin vπ - 510 .385vπ 196p + 10k 510 E B 19 50 C 1.5 M 22.5k - - vs 585 - 585 .385vπ + 22.5k 510 510 196p vo - E BME 373 Electronics II – J.Schesser 31 Example Calculation of the Miller Parameters and the Midband Gain B 19 50 vs C + + vin vπ - 10k .385vμ 585 22.5k r in Miller 510 510 r out Miller - E R’L=22.5k||510||510||rμOUTMILLER=252 R’s=[10k||(19+rπ||rμINMILLER)]=550 Miler Effect Parameters Calculations rμout MILLER=1.5M*Av /(Av-1) ≈ 1.5M rπ||rμin MILLER = 563 Av= vo /vπ=-gmR’L=-.385*252=-97 rμin MILLER=1.5M/(1-Av )=1.5M/(1+gmR’L ) ≈ 15.k vπ /vin =rπ||rμin MILLER / ((rπ||rμin MILLER)+rx) =.97 vin/vs=R’s/(R’s+50)=0.92 Avs= vo/vs= (vo /vπ)(vπ /vin) (vin /vs)=-97(.92)(.97)=-86.1 BME 373 Electronics II – J.Schesser 32 Example Calculation of the Break Frequencies r out Miller r in Miller B 19 50 vs + + vin vπ 10k C .385vπ 585 - - C out Miller C in Miller 22.5k 510 510 196p E R’s=[(50||10k)+19]||585||rμINMILLER=61.3 R’L=22.5k||510||510||rμOUTMILLER=252 Miler Effect Parameters rμin MILLER=15.k rμout MILLER= 1.5M Cμin MILLER=8p*(1-Av ) ≈ 784 pF Cμout MILLER=8p*(Av-1) /Av ≈ 8.08 pF Calculations CT=196+CμinMiller= 980 pF fb in=1/(2πR’sCT)=1/(2π*61.3*980x10-12)=2.65 MHz fb out=1/(2πR’LCμout Miller)=1/(2π*252*8.08x10-12)=78.1 MHz BME 373 Electronics II – J.Schesser 33 Example Alternative Method Using Circuit Analysis - Output Circuit B 19 B’ 50 vs + + vin v 10k π - E CT=Cμinmiller +Cgs + vo .385vπ - RB’=rμINMILLER|| rπ = 15k||585 =563 C - R’L=252 Cμoutmiller=8p =784p+196p=980pf Output Pole Frequency 1 vo j 8 1012 g m R' L || ZC .385 outmiller 1 v 252 j 8 10 12 252 252 .385 .385 1 j 8 1012 252 1 j 2.03 109 252 f bout 1 78.1MHz 2 2.03 10 9 BME 373 Electronics II – J.Schesser 34 Example Alternative Method Using Circuit Analysis - Input Circuit 50 B 19 B’ vs + + vin v 10k π - C RB’=rμINMILLER|| rπ = 15k||585=563 Input Pole Frequency E CT=Cμinmiller +Cgs RB ' || Z CT v vB RB ' || Z CT rx 1 RB ' jCT RB ' 1 1 jCT RB ' RB ' jCT RB ' v 1 jCT RB ' RB ' RB ' vB rx rx (1 jCT RB ' ) RB ' 1 jCT RB ' - R’L=252 Cμoutmiller=8p =784p+196p=980pf v v vB vS vB vs RB ' || Z CT vo .385vπ - + RB ' RB ' 1 rx RB ' jCT RB ' rx rx RB ' 1 jC RB ' rx T rx RB ' Input Pole Frequency RB || (rx RB ' || Z CT ) vB vs RB || ( rx RB ' || Z CT ) RS (rx RB ' || Z CT ) rx r (1 jCT RB ' ) RB ' rx RB ' jCT RB ' rx RB ' x 1 jCT RB ' 1 jCT RB ' 1 jCT RB ' rx RB ' jCT RB ' rx r RB ' jCT RB ' rx 1 jCT RB ' RB || (rx RB ' || Z CT ) RB || x r RB ' jCT RB ' rx 1 jCT RB ' RB x 1 jCT RB ' RB RB ' rx ) RB (rx RB ' jCT RB ' rx ) (rx RB ' ) RB (1 jCT RB ' ) (rx RB ' jCT RB ' rx ) RB rx RB ' jCT ( RB ' RB RB ' rx ) RB (rx RB ' )(1 jCT BME 373 Electronics II – J.Schesser 35 CT=Cμinmiller +Cgs =784p+196p=980pf 50 + R’L=252 B 19 B’ C + 10k vs Example Input Circuit Cont’d vin vπ - - + vo .385vπ E Cμoutmiller=8p RB ' rx ) (rx RB ' ) RB || (rx RB ' || Z CT ) RB rx RB ' jCT ( RB ' RB RB ' rx ) vB RB ' rx vs RB || (rx RB ' || Z CT ) RS RB (rx RB ' )(1 jCT ) (rx RB ' ) RS RB rx RB ' jCT ( RB ' RB RB ' rx ) RB’=rμINMILLER|| rπ = 15k||585=563 RB (rx RB ' )(1 jCT RB (rx RB ' )(1 jCT RB ' rx (rx RB ' ) RB ' rx ) (rx RB ' ) RB ' rx ) (rx RB ' ) ) RS ( RB rx RB ' jCT ( RB ' RB RB ' rx )) RB (rx RB ' ) jCT RB ' rx RB ) RS ( RB rx RB ' jCT ( RB ' RB RB ' rx )) RB (rx RB ' )(1 jCT RB (rx RB ' )(1 jCT RB ' rx ) (rx RB ' ) RB (rx RB ' ) RS ( RB rx RB ' ) jCT ( RB ' rx RB RS ( RB ' RB RB ' rx )) RB (rx RB ' )(1 jCT BME 373 Electronics II – J.Schesser 36 Example Input Circuit Cont’d B 19 B’ 50 vs + + vin v 10k π - C RB’=rμINMILLER|| rπ = 15k||585 =563 Input Pole Frequency vo .385vπ - E CT=Cμinmiller +Cgs + - R’L=252 Cμoutmiller=8p =784p+196p=980pf v v vB RB ' 1 vS vB vs rx RB ' 1 jC RB ' rx T rx RB ' RB ' rx ) (rx RB ' ) RB (rx RB ' ) RS ( RB rx RB ' ) jCT ( RB ' rx RB RS ( RB ' RB RB ' rx )) RB (rx RB ' )(1 jCT RB RB ' RB rx RB RB ' RS RB RS rx RS RB ' RB ' RB RB ' rx RB RS RB ' RB RB ' rx RS RB (rx RB ' ) RS ( RB rx RB ' ) jCT ( RB ' rx RB RS ( RB ' RB RB ' rx )) 1 jC ( )) T RB rx RB RB ' RS RB RS rx RS RB ' fbin 1 2.65MHz 2 6 108 BME 373 Electronics II – J.Schesser 37 Example Input Circuit using Thevenin’s Theorem B 19 B’ 50 vs + + vin v 10k π RB’=rμINMILLER|| rπ = 15k||585 E CT=Cμnmiller +Cgs + vo .385vπ - =563 C - R’L=252 Cμoutmiller=8p =784p+196p=980pf Thevenin's method for Input Pole RT ( RS || RB rx ) || RB ' ( RS RB R R r R r R rx ) || RB ' ( S B x S x B ) || RB ' RS RB RS RB RS RB rx RS rx RB ) RB ' RS RB RS RB RB ' rx RS RB ' rx RB RB ' R R r R r R ( S B x S x B ) RB ' RS RB rx RS rx RB RB ' RS RB ' RB RS RB ( fbin 1 2.65MHz 2 CT RT BME 373 Electronics II – J.Schesser 38 Emitter Follower Cμ B rx Rs C + vs RB rπ vπ rμ gmvπ Cπ ro E - + VCC 15 V RE Rs C1 510 1uF Q1 Q2N2222A RB 10k 100uF RE 1.3k RL 50 0 VEE –15 V vo - C2 Vs 1V 0 RL 0 BME 373 Electronics II – J.Schesser 39 Emitter Follower (Continued) Rs Cμ B rx C + vs RB rπ vπ rμ ro gmvπ Cπ E - + => R’s=Rs||RB+rx R’L=RL||RE||ro RE Cπ R’s v’s b’ + vπ Cμ BME 373 Electronics II – J.Schesser vo - E rπ rμ RL + R’ L gmvπ vo - C 40 Emitter Follower (Continued) Cπ R’s v’s b’ + vπ - rμ I fIN Vf v vb ' Z f Z f Z f (1 g m R 'L ) Z in Miller Z f (1 g m R'L ) vo L gmvπ C Miller Effect Calculations for the Input vb ' v∂ vo (1 g m R' L )v∂ + R’ Cμ vo g m R ' L v ∂ E rπ R’s rπ(1+gmR’L) Cπ / (1+ gmR’L) b’ rμ v’s Cμ RT BME 373 Electronics II – J.Schesser CT 41 Example The Hybrid-π parameters : – – – – – – – – – – Q-point => IEQ=10.6 mA, VCEQ= 15V Assume VT = 26 mV β=225 gm=.385 S rx=19 Ω rπ=585 Ω ro=22.5k Ω rμ=1.5 M Ω Cπ=196pF Cμ=8pF The Circuit parameters : – – – – RS=510 RB=10 k RE=1.3 k RL=50 Calculations: – – – – – R’s=Rs||RB+rx= 510||10k+19=504 R’L=RL||RE||ro= 50||1.3k||22.5k=48 RT=R’S||rμ||rπ(1+gmR’L)=483 CT=Cμ+Cpπ /(1+gmR’L)= 18.1 pF fb=1/(2πRTCT)=18.2 MHz Recall for an emitter follower: – Av=(β+1)R’L/[rπ+(β+1)R’L]=.949 – Rin=RB||[rπ+(β+1)R’L]= 5.33 kΩ – Avs=AvRin /(Rin+RS)= 8.66 BME 373 Electronics II – J.Schesser 42 Low Frequency Response of RC-Coupled Amplifiers • Coupling Capacitors – To couple the various stages of a multi-stage amplifier • For AC performance essentially a short circuit and AC current flows from one stage to the next stage – To support the biasing of each stage individually: • For DC performance: open circuit and no biasing current flows from one stage to another • ByPass Capacitors – To support the addition of a resistor for biasing purposes only • For DC performance: open circuit and current flows through the biasing resistor – Short-circuit the biasing resistor for AC performance. • For AC performance: short circuit and no current flows through the resistor (shorted out/bypassed) BME 373 Electronics II – J.Schesser 43 Capacitors VCC 15V RC 510 C2 + 1uF C1 Q1 1uF Rs 50 Vs + - + 510 vout 0 vn RB 10k - RE 1V 0 RL Q2N2222A CE 1.3k 0 100uF 0 VEE –15V Coupling Capacitors Bypass Capacitors BME 373 Electronics II – J.Schesser 44 Coupling Capacitors Rs VS Avs + - C1 Ro + VX - VO VX VY VO VS VS VX VY + Rin - VY C2 + Vo - RL VY=Avo VX VX Rin j ( f / f1 ) , VS Rin RS 1 j ( f / f1 ) f1 1 2 ( RS Rin )C1 20log|Avsmid| VX RL j( f / f2 ) , VS RL Ro 1 j ( f / f 2 ) f2 1 , 2 ( Ro RL )C2 VX Avo , VS Avs Rin j ( f / f1 ) RL j( f / f2 ) Avo Rin RS 1 j ( f / f1 ) RL Ro 1 j ( f / f 2 ) Avs Avsmid Avsmid j ( f / f1 ) j( f / f2 ) 1 j ( f / f1 ) 1 j ( f / f 2 ) Rin RL Avo Rin RS RL Ro BME 373 Electronics II – J.Schesser f2 f1 45 Bypass Capacitors • The value of a bypass capacitor is chosen to provide a short circuit at a frequency sufficiently low than the band pass of amplifier design • For a emitter follower, it can be shown f1=1/(2π R’E CE ) where R’E is the equivalent resistance reflected into the emitter circuit BME 373 Electronics II – J.Schesser 46 Homework • Hybrid- – Problems: 8.28,31 • Common Emitter – Problems: 8.40-41 • Emitter Follower – Problems: 8.56-7 • Low Frequency Response – Problems: 8.60-2 BME 373 Electronics II – J.Schesser 57
© Copyright 2024 ExpyDoc