BMR 2014 Bahlawane-public

6/20/2014
Synthesis of nanocomposite thin
films with tunable optical
properties
Naoufal Bahlawane
Introduction
Carbon, Metal, metal carbide or
metal oxide nanoparticles
Metal oxide, metal nitride or organic-inorganic hybrid matrix
Nanocomposite thin film
Tuning parameters:
Nanoparticles:
- Chemical nature
- Size
- Density
Matrix:
- Composition
- Porosity/ density
Dr. N. Bahlawane
19 June 2014
1
6/20/2014
Plasmonic Color
Development of decorative coatings with highly adjustable optical appearance:
- Distinct and attractive colors
- An appearance that is insensitive to the:
- surface roughness
- thickness
- nature of the underlying substrate materials
- Resistance to chemical/mechanical and thermal aggressions
Using an appropriate process:
- The synthesis does not involve the manipulation of nanoparticles (in situ formation)
- The integration ability (thermal budget, chemical compatibility, 3D object coatings…)
- Up scaling ability of the process
Dr. N. Bahlawane
19 June 2014
Content
• Synthesis process
– The general view
– The implementation
– The proof of principle
– Ag-ZnO
– Ni-ZnO
– Alloys-ZnO
– Statements
• Tunable optical properties
–
–
–
–
Background
Simulation
Experimental state of the art
Statements
Dr. N. Bahlawane
19 June 2014
2
6/20/2014
Metal-Organic Chemical
Vapor Deposition
MOCVD
Dr. N. Bahlawane
19 June 2014
Synthesis process
Chemical Vapor Deposition
Flow direction
Nucleation
Homogeneous
reaction
Desorption of the
by-products
Diffusion to the
surface
Desorption
Surface diffusion
Surface
adsorption
Surface reaction
Nucleation
CVD of Compound
Semiconductors,
Jones /O'Brien VCH, 1997
Dr. N. Bahlawane
19 June 2014
3
6/20/2014
The implementation
Semi-industrial facility in
clean-room Laboratory
Φ = 200mm
Home-made Lab facility
Φ = 150mm
Dr. N. Bahlawane
19 June 2014
Nanocomposites: Ag-ZnO
Ag-ZnO film
ZnO matrix
Ag nanoparticle
A g (1 1 1 )
A g -Z n O
Z n O
Substrate
Dr. N. Bahlawane
3 0
3 5
40
2 Θ
45
5 0
5 5
60
6 5
/d e g re e
19 June 2014
4
6/20/2014
Ni-ZnO film
Nanocomposites: Ni-ZnO
5 nm
XRD: Ni (hcp)
D= 4.4 nm
Substrate
TEM: D= 2-4 nm
Dr. N. Bahlawane
19 June 2014
Other examples
XPS
XRD
Cu0.34Ni0.66-ZnO
Cu (111); (200)
Intensity / a. u.
Cu-ZnO
Ni (002)
(011)
Ni-ZnO
Ag (111)
Ag-ZnO
ZnO
30
35
40
45
50
55
60
65
Materials
Particle size /nm
Density / cm3
Ni-ZnO
4.4
1.9 1018
Cu-ZnO
11.6
7 1016
CuNi-ZnO
6.6
2.2 1017
2Θ / degree
Dr. N. Bahlawane
19 June 2014
5
6/20/2014
Take-home message
• Compatible chemistries were identified to grow
oxidized and non-oxidized transition metals.
• Noble and reactive metals can be incorporated
into oxide matrices.
• Nanoparticles can be embedded as pure metals,
alloys, or as bi-phased nanoparticles.
Dr. N. Bahlawane
19 June 2014
Tunable optical
properties:
Plasmonic colors
Dr. N. Bahlawane
19 June 2014
6
6/20/2014
Plasmonics: background
Light-nanoparticles interaction
Light
Plasmon
Light
The wavelength at which the resonant
interaction occurs (localized Surface Plasmon
Resonance: SPR) depends on various
parameters:
- Size of the nanoparticles
- Shape of the nanoparticles
- Composition of the nanoparticles
- The distance between them
- Refractive index of the matrix
Dr. N. Bahlawane
19 June 2014
Plasmonics: background
The SPR band maximum according to Mie’s theory:
High-frequency dielectric constant
of the nanoparticle
π c ⋅ me ⋅ (ε 0 + 2n
2
λ2max =
2
)
Refractive index of the medium
e2 Ne
Density of free electrons on the metal
nanoparticles.
Dr. N. Bahlawane
19 June 2014
7
6/20/2014
Plasmonic: Simulation
Effect of the size of the nanoparticles:
1.0
Intensity (a. u. )
0.8
Refractive index of the medium: 1.45
Nanoparticles: Silver (Ag)
5 nm
10 nm
15 nm
20 nm
0.6
0.4
Effect of the nanoparticles composition:
0.2
1.0
400
500
600
Wavelength (nm)
Intensity (a. u. )
0.0
alloys
0.8
Nanoparticle size: 10 nm
Refractive index of the medium: 1.45
0.6
Au
Ag
0.4
0.2
0.0
400
500
600
700
800
900
Wavelength (nm)
Dr. N. Bahlawane
19 June 2014
Plasmonic: Simulation
Effect of the medium:
Intensity (a. u. )
1.0
0.8
Nanoparticles: 10 nm Silver (Ag),
Refractive index of the medium:
0.6
1
1.45
2
2.2
0.4
0.2
0.0
300
400
500
600
700
800
900
Wavelength (nm)
Effect of the distance between nanoparticles:
Dr. N. Bahlawane
19 June 2014
8
6/20/2014
Experimental state-of-the-art
Tuning the nano-particle
Bahlawane et al:
Angew. Chem. 50(2011)9957-9960
20 nm
Dr. N. Bahlawane
19 June 2014
Nanocomposites: Au-TixZnOy
Tuning the matrix
Variation of composition
Metal oxide matrix
Intensity (a. u.)
1.0
Ti / (Ti+Zn)
0
0.2
0.3
0.5
0.8
0.6
0.4
0.2
0.0
400
Au‒ Ti-doped ZnO
500
600
700
800
900
Wavelength (nm)
600
590
Nanocomposite thin film
SPR (nm)
580
570
560
550
540
0.0
0.1
0.2
0.3
0.4
0.5
Ti / (Ti+Zn) in the feedstock
Dr. N. Bahlawane
19 June 2014
9
6/20/2014
State-of-the-art
Ag-ZnO
AuxAg1-x-ZnO
SPR = 480 nm
SPR = 530 nm
Au-ZnO
SPR = 650 nm
Dr. N. Bahlawane
19 June 2014
Take-home message
• Nanocomposite coatings can be made with
tailored optical properties via:
• The tuning of the nanoparticles size and density
• The tuning of the nanoparticles composition
• The tuning of the matrix composition
• The choice of the matrix allows the combination
of the decorative aspect with other properties:
•
•
•
•
Dr. N. Bahlawane
Mechanical resistance
Chemical resistance
Thermal resistance
Diffusion barrier
19 June 2014
10
6/20/2014
Centre de Recherche Public - Gabriel Lippmann
+352 470 261 585
[email protected]
www.lippmann.lu
Thank you for your
attention
Dr. N. Bahlawane
19 June 2014
11