WEBINAR Target quantitation and metabolomic studies of marine biotoxins in algae and shellfish using QTOF technology Philipp Hess1 Thomas Glauner2, Bernhard Wüst2, Manoëlla Sibat1, Florence Mondeguer1, Fabienne Hervé1, Marie Geiger1, Zita Zendong1 1 Laboratoire Phycotoxines IFREMER – 44300 Nantes - France 2 Agilent Technologies R&D - 76337 Waldbronn - Germany Content Context Development of a quantitative, rapid method for marine biotoxins using full scan Q-ToF mass spectrometry Full scan techniques Chromatographic developments Structural confirmation Development of a database and library for marine biotoxins Databases (collection of molecular formulae) Libraries (database plus structures, spectra and metadata) “Home-made” versus commercially available tools Metabolomic techniques in chemotaxonomy and the elucidation of unknowns (dereplication) “Metabolome of a sample” Metabolomes of micro-algae (individual, comparative, chemotaxonomy) Standardisation of work-flow Linking dereplication work-flow to miniaturised bioassays Conclusion 2 Biodiversity = Chemodiversity Unknown toxins France 2003 – 2008 (as detected per mouse bioassay for lipophilic toxins) 27 % of unexplained mouse bioassays European or global perspective: Europe is a single market, hence all toxins encountered in Europe must be monitored Europe imports shellfish from a wide variety of third countries, hence an even larger, virtually global range of toxins must be taken into account for imports (AU, NZ, JP, KO, Thailand, Vietnam, Jamaica, CA, Chile, Peru, Uruguay, Greenland, Morocco, Tunisia and Turkey) Legislative change from mouse bioassay for lipophilic toxins to targeted LC-MS/MS methods as reference requires increased vigilance 5 1- Full scan analysis: Example of full scan power MS Mass Hunter software to evaluate molecular and adduct ion clusters. Okadaic acid 6 A fast method for quantitation of marine biotoxins Fast LC-MS/MS method tested on: Kinetex C18 100*2.1mm 2.6µm (Phenomenex) Poroshell 120 EC-C18 100*2.1mm 2.7µm (Agilent) Zorbax Extend-C18 50*2.1mm 1.8 µm (Agilent) Zorbax SB C8 50*2.1mm 1.8µm (Agilent) 7 8 Calibration curves Quantitative rapid method (full scan) Certified standards Six calibration levels R2 > 0,98 OA AZA 1 SPX 1 PnTX-G PlTX LOD (ng/mL) Q-ToF API 4000 4.5 0.5 0.4 0.1 0.3 0.05 0.3 0.05 68 10 9 Standard curves pre- and post- matrix injections Matrix effects (PnTX-G) Rdt moyen (%) 78 V. decussata WF M. galloprovincialis WF 71 M. galloprovincialis HP 53 CV (%) 4% 4% 10% 2000000 1800000 1600000 y = 17413x + 8757.4 R² = 0.999 1400000 1200000 y = 16583x + 15438 R² = 0.9966 1000000 800000 600000 400000 200000 0 0 50 100 150 Signal (% of expected) V decussata WF Mussels WF Mussels HP C theor = 4.9 ng/ml C theor = 24.5 ng/ml C theor = 50.0 ng/ml Matrix effects are comparable to those observed in triple-stage quadrupole mass spectrometry ! 10 Confirmation of the identity of novel analogues Using LC-HRMS for definitive confirmation of identity: Example of isobaric PnTX-G and SPX-B & 13dm SPX-D 458 ion is specific to PnTX-G and does not exist for SPXs 12 Agilent suite of software PCDL Manager - module Database in construction (currently 275 compounds) All major phycotoxins in Europe Structures created in ChemDraw and then inserted into the PCDL library as .mol-files 13 Database development – literature search… Number Toxin family Toxin group Abbreviation ASP Domoic acid DSP Cyanobacteria Cyclic imines (FAT) PSP NSP Compound Molecular structure DA 9 9 Okadaic acid & dinophysistoxins OA+DTXs 65 10 Azaspiracids AZAs 30 / Pectenotoxins PTXs 16 4 Yessotoxins YTXs 31 / Oscillatoxins n/a 9 / Gymnodimines GYMs 4 4 Spirolides SPXs 11 11 Pinnatoxins and Pteriatoxins PnTXs+PterTX s 12 12 Saxitoxins STXs 18 18 Tetrodotoxins TTXs 18 / Palytoxins PLTXs 8 1 Brevetoxins PbTXs (BTX) 16 / Pacific Ciguatoxins P-CTXs 27 / Caribbean Ciguatoxins C-CTXs 2 / 14 Database development – entering spectra… LC-MS/MS spectra are reputed to be nonreproducible between instruments of different manufacturers This can be overcome to some extent by acquiring spectra at low, medium and high collision energies We are working with Agilent to establish whether a simple mass indicator can be used to set increasing CEs as a standard approach 15 Metabolomics Approach: NL: 9.69E2 C 4 H 10 O 2 N 3: C 4 H 10 O 2 N 3 p (gss, s /p:40) Chrg 1 R: 20.0 PPM @FWHM NL: 1.11E6 281008023#93 RT: 2.46 AV: 1 SB: 1782 3.11-49.81 , 0.01-2.31 T: + c ESI Full ms [50.00-800.00] 110 133.08020 100 90 80 Relative Abundance 70 MSn 60 50 40 30 133.07378 20 133.09665 10 133.08236 0 133.07 133.08 133.09 133.10 m/z Structure elucidation 1000’s ions Biomarkers ? Statistical analyses Data retreatment Fingerprints(LC/ HRMS) Sample Prep intensités Also: rt m/z Fingerprints Footprints Crosstalk 16 Agilent work-flow for non-targeted analysis 17 Dealing with data complexity – Metabolome of A. spinosum TIC BPC ECC 6800 compounds > 1500 counts AZA accumulation, detoxification and biotransformation in M. edulis experimentally fed A. spinosum A. spinosum & Isochrysis affinis galbana 3-week experiment : => 1-week continuous feeding 8 1 6 3 4 5 1 : Algal tank 2 : Electrovalve 3 : Air lift system 4 : Cylindroconical tank (160L, 4Kg of mussel) 5 : Bin (overflow) 6 : Fluorometer 7 : Cryostat (12.5°C) 8 : Sofware (lab-view) 5 000 cells.mL-1 of A. spinosum 5 4 6 10 000 cells.mL-1 of A. spinosum 7 5 000/5 000 cells.mL-1 of A. spinosum and T-iso 10 000 cell.mL-1 of T-Iso => 2-weeks of detoxification 3 8 2 with T-Iso (10 000 cells.mL-1) 1 20 AZAs accumulation and depuration in M. edulis (µg.kg-1 wet flesh) 700 Depuration Contamination 600 AZA (µg.kg-1) 500 400 300 200 100 0 0 2 4 6 8 10 12 14 16 18 20 Time (days) Diet 1 Diet 2 Diet 3 Control After 6h of contamination : above the EU limit on AZA content Maximum AZA content obtained ±600 µg kg-1 of wet flesh Jauffrais T., Marcaillou C., Herrenknecht C., Truquet P., Séchet V., Nicolau E., Tillmann U., Hess P. (2012) Azaspiracid accumulation and detoxification in blue mussels (Mytilus edulis), experimentally fed Azadinium spinosum. Toxicon 60 582-595. 21 Screening of Azadinium and mussels exposed to Azadinium using the database File A. spin - 1 A. spin - 2 A. spin - 3 Mussels-1 Mussels-2 Mussels-3 A. spin - 1 A. spin - 2 A. spin - 3 Mussels-1 Mussels-2 Mussels-3 Mussels-1 Mussels-2 Mussels-3 Mussels-1 Mussels-2 Mussels-3 Mussels-1 Mussels-2 Mussels-3 Mussels-1 Mussels-2 Mussels-3 Mussels-1 Mussels-1 Mussels-2 Mussels-2 Mussels-3 Mussels-3 Mussels-1 Mussels-2 Mussels-3 ID AZA-1 AZA-1 AZA-1 AZA-1 AZA-1 AZA-1 AZA-2 AZA-2 AZA-2 AZA-2 AZA-2 AZA-2 AZA-17 AZA-17 AZA-17 AZA-19 AZA-19 AZA-19 AZA-10 AZA-10 AZA-10 AZA-3 AZA-3 AZA-3 AZA-4 AZA-4 AZA-4 AZA-4 AZA-4 AZA-4 AZA-6 AZA-6 AZA-6 C C47 C47 C47 C47 C47 C47 C48 C48 C48 C48 C48 C48 C47 C47 C47 C48 C48 C48 C47 C47 C47 C46 C46 C46 C46 C46 C46 C46 C46 C46 C47 C47 C47 H H71 H71 H71 H71 H71 H71 H73 H73 H73 H73 H73 H73 H69 H69 H69 H71 H71 H71 H71 H71 H71 H69 H69 H69 H69 H69 H69 H69 H69 H69 H71 H71 H71 N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N O RT O12 O12 O12 O12 O12 O12 O12 O12 O12 O12 O12 O12 O14 O14 O14 O14 O14 O14 O13 O13 O13 O12 O12 O12 O13 O13 O13 O13 O13 O13 O12 O12 O12 m/z 11.021 11.13 11.079 10.868 10.873 10.873 11.637 12.861 12.76 11.45 11.423 11.481 10.393 10.407 10.374 10.709 10.657 10.59 10.027 10.024 10.008 10.66 10.707 10.682 9.453 9.794 9.45 9.808 9.45 9.791 10.709 10.715 10.707 Mass Mass Score 842.5067 841.499 841.4976 842.5067 841.499 841.4976 864.4857 841.499 841.4976 842.5054 841.4977 841.4976 842.5053 841.4977 841.4976 842.5049 841.4975 841.4976 878.5015 855.5144 855.5133 856.5203 855.5129 855.5133 856.5208 855.5132 855.5133 856.5203 855.5128 855.5133 856.5203 855.513 855.5133 856.5198 855.5143 855.5133 894.4598 871.4721 871.4718 872.4797 871.4719 871.4718 872.4786 871.4712 871.4718 886.4941 885.4866 885.4875 886.494 885.4867 885.4875 886.4953 885.488 885.4875 858.499 857.4917 857.4925 858.4988 857.4917 857.4925 858.4983 857.4918 857.4925 828.4885 827.481 827.482 828.4884 827.4809 827.482 828.4883 827.4811 827.482 844.4834 843.4763 843.4769 844.483 843.4753 843.4769 844.4827 843.4752 843.4769 844.4828 843.4755 843.4769 844.4829 843.4758 843.4769 844.483 843.4747 843.4769 842.5037 841.4979 841.4976 842.5038 841.4963 841.4976 842.5043 841.5026 841.4976 Diff (DB, ppm) Ions 96.7 1.33 96.71 1.38 97.1 1.36 99.26 0.1 99.23 0.08 99.37 -0.15 97.35 1.15 98.2 -0.35 98.83 -0.07 99.01 -0.46 99.12 -0.27 95.62 1.02 98.38 0.32 98.55 0.1 98.16 -0.64 98.51 -0.83 98.98 -0.78 97.45 0.53 98.26 -0.87 98.21 -0.85 89.95 -0.73 98.4 -1 98.37 -1.05 98.62 -0.85 92.08 -0.54 95.88 -1.61 97.13 -1.64 96.81 -1.36 97.93 -1.1 80.38 -2.23 94.21 0.26 95.23 -1.3 74.52 4.93 Area 12 12 12 12 12 9 10 10 9 10 11 10 11 11 12 12 8 7 8 8 8 11 8 8 6 9 8 10 8 8 10 9 9 39342550 86901383 104250164 2451823 2562262 1310148 11821349 1494584 2447278 1190684 1228746 559856 2593854 2182779 540624 615806 502690 173586 235107 229583 251621 502099 439507 339649 21690 135150 90541 123139 225203 159807 121235 113820 114723 Automated screening of knowns in full scan mode Comparative metabolomics in musels 357 compounds only present in Azadinium-exposed mussels compared to Azadinium AZA-metabolites 51 compounds only present in Azadinium-exposed mussels compared to control mussels AZA-metabolites AZA2 AZA1 Semi-automatic metabolite identification becomes practical ! 24 Examples of algal metabolomes: Alexandrium ostenfeldii 7,232 min 13,19 Didesmethyl-SPX-C (M+H)+ = 692,4520 Examples of algal metabolomes: Karenia selliformis 6,48 min Gymnodimine A (M+H)+ = 508,3433 Examples of algal metabolomes: Prorocentrum lima 11,38 min OA (M+H)+ = 805,4733 12,71 min DTX1 (M+H)+ = 819,4901 Examples of algal metabolomes: Pseudo-nitzschia 5,49 min DA (M+H)+ 312,1445 Comparative metabolomes: Azadinium obesum AZA1 (M+H)+ 842.5068 AZA2 (M+H)+ 856.5224 AZA? (M+H)+ 716.4748 Azadinium spinosum AZA1-methyl ester (M+H)+ 856.5201 77 features only in A. obesum, 59 features only in A. spinosum, and 95 common features ! From metabolomes to chemotaxonomy: From metabolomes to chemotaxonomy: Comparative metabolomes of algal fingerprints and algal footprints Acetone extract of A. spinosum (Fingerprint) Lysed Azadinium shaken for 24h in seawater (not stirred!) and adsorbed onto passive sampler (HP20) SPATT A. spinosum (Footprint) 147 features in SPATT vs. 196 features in A. spinosum 32 Crude extract (algal mix) vs SPE-cleaned extract (HLB) Crude extract: 1422 compounds SPE-cleaned extract: 859 compounds Importance of controls: procedural blanks (Seawater Passive sampler extract) HLB: 2933 compounds HP-20: 2654 compounds Even though these polymeric materials had been washed with solvent prior to use they release contamination at elution post experiment ! 34 Pilot-scale culture of V. rugosum Batch 1 2 3 4 5 6 7 8 10 Total Mass of pellet (g) 26 19 16 13 16 28 28 58 56 29 289g 614 442 303 237 259 411 276 140 246 181 3mg Masse PnTX G (µg) Culture conditions L1 L1 L1* L1 L1 L1* Duration of culture (d) 41 33 29 25 47 37** 63 39 L1 9 L1 L1 L1 56 43 Metabolome of Vulcanodinium rugosum - bioguided fractionation Vulcanodinium rugosum Crude extract Biological Screening and Metabolomics: Dereplication1,2 Fractioning Fractions Chemical analysis -Triple quad -Q-ToF Evaluation of biological activity -Cytotoxicity KB cells -Fly larvae -bacteria Data analysis (comparison to large natural product libraries2) (1) Kristian F. Nielsen et al. J Nat. Prod. (2011) 74, p2338-2348 (2) http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml Fractionation of sample for polar lipids Scheme of extraction and purification of PnTX-G CRUDE (A) (2050 mg) PnTX G Crude extr. DCM-fract. Aq. MeOH DCM fraction (B) (442 mg; 22% of A) Hexane phase Aqueous phase Aq. MeOH fraction (C) (168 mg; 8% of A) SiO2-F2 (73 mg; 43 % of C) SiO2-F3 (39 mg; 23 % of C) Evaluation of the activity of algal extracts using cytotoxicity assay 100 80 60 Masse fractions (%) 40 Masse PnTX G (%) 20 0 F1bP3 F2bP3 F3bP3 F4bP3 F5bP3 Dereplication: database screening results for SiO2 F3 Vulcanodinium EB DCMMeOHaq SiO2 F3 Pinnatoxin-G Dereplication: SiO2 F2: Screen against MarinLit (database by Blunt & Munro with > 30 000 cpds (this process takes around 15 min per 10 min of full scan data) Name Nakijiquinone A RT 5.68 m/z 402.2278 Score (DB) 99.4 Diff (DB, ppm) -0.82 Interestingly… Out of the 144 compounds present in these two fractions, we were able to identify 45 compounds applying a filter of 5 ppm, or 36 compounds when applying a filter of 2 ppm, and 22 compounds at < 1 ppm About 100 unknowns to follow up on… Several present that had been initially identified from sponges: nakijiquinone, petrosaspongiolide, plakinic acid and sarcotin We expect to be able to clarify the biological origin and biogeography of many natural products… Conclusions Developed rapid & quantitative method for marine biotoxins using full scan techniques Linear over appropriate range Allows for quantitation of all regulated (EU) lipophilic toxins in < 9 min Developed a database and library for marine biotoxins Ca. 275 compounds entered (ca. 90 structures added) Demonstrated capability of rapid screening against large-scale commercial databases Developed work-flow for assessing finger- and footprints of microalgae Mass Profiler allows comparative work (contaminated mussels versus control mussels) Made a basis for chemotaxonomy of microalgae Used dereplication in conjunction with bioscreening Thanks for your attention !! Jean-François de Troy « The oyster lunch » 1735 (originally decorating the dining room in Versailles), Musée Condé, Chantilly, France 43
© Copyright 2024 ExpyDoc