Partonic charge symmetry violation on the lattice Ross D. Young CSSM & CoEPP, University of Adelaide PAVI 14: From parity violation to hadron structure and more... Skaneateles, NY, 14–18 July, 2014 Partonic charge symmetry violation on the lattice Ross D. Young CSSM & CoEPP, University of Adelaide PAVI 14: From parity violation to hadron structure and more... Skaneateles, NY, 14–18 July, 2014 Outline From parity violation to hadron structure and more... Outline From parity violation to hadron structure and more... From hadron structure to parity violation and more... Outline From parity violation to hadron structure and more... From hadron structure to parity violation and more... From hadron structure to parity violation and nothing more... Outline From parity violation to hadron structure and more... From hadron structure to parity violation and more... From hadron structure to parity violation and nothing more... From hadron structure to parity violation and nothing more... so far Hadron Structure Dynamics of the strong force comes from QCD Hadron Structure Dynamics of the strong force comes from QCD Almost all of the structure of the proton is governed by QCD Hadron Structure Dynamics of the strong force comes from QCD Almost all of the structure of the proton is governed by QCD Nonperturbative QFT Lattice QCD 2400 H * H Hs * Hs Bc * Bc © 2012 Andreas Kronfeld/Fermi Natl Accelerator Lab. 2200 2000 m 1800 4000 MeV (MeV) 1600 1400 1200 1000 800 600 400 Kronfeld 200 0 π ρ K ∗ K η η+ ω φ N Λ Σ Ξ Δ ∗ Σ Ξ ∗ Hadron spectrum in lattice QCD Excellent description of low-lying hadron masses Ω Shanahan et al., PRD(2014) Shanahan et al., 1403.1965[hep-lat] Structure: Isovector Nucleon Form Factors Red curves: Kelly parameterisation of data Form Factors: Details for another talk Lattice Dirac form factors Form Factors: Details for another talk Lattice Dirac form factors Lattice Pauli form factors Form Factors: Details for another talk Lattice Dirac form factors Lattice Pauli form factors (Partially quenched) SU(3) Chiral EFT-inspired... Form Factors: Details for another talk Lattice Dirac form factors Lattice Pauli form factors (Partially quenched) SU(3) Chiral EFT-inspired... 2 Q ⇠ 0.26 GeV 2 Q2 ⇠ 1.35 GeV2 Chiral extrapolation Form Factors: Details for another talk Lattice Dirac form factors Lattice Pauli form factors (Partially quenched) SU(3) Chiral EFT-inspired... 2 Q ⇠ 0.26 GeV 2 Q2 ⇠ 1.35 GeV2 Chiral extrapolation Phiala Shanahan, U. Adelaide Shanahan et al., PRD(2014) Shanahan et al., 1403.1965[hep-lat] Isovector Nucleon Form Factors Red curves: Kelly parameterisation of data Shanahan et al., PRD(2014) Shanahan et al., 1403.1965[hep-lat] Some items still to address: * Finite “a” extrapolation * Excited state contamination Isovector Nucleon Form Factors Red curves: Kelly parameterisation of data Charge Symmetry Violation Nature doesn’t exhibit exact charge symmetry invariance Charge Symmetry Violation Nature doesn’t exhibit exact charge symmetry invariance Charge Symmetry Violation Nature doesn’t exhibit exact charge symmetry invariance Charge symmetry is broken by: Quark masses md mu ⇠ 0.5% Mp Charge Symmetry Violation Nature doesn’t exhibit exact charge symmetry invariance Charge symmetry is broken by: Quark masses md mu ⇠ 0.5% Mp Electromagnetism Qu 6= Qd O(↵) ⇠ 1% Charge Symmetry Violation Nature doesn’t exhibit exact charge symmetry invariance Charge symmetry is broken by: Quark masses md mu ⇠ 0.5% Mp Electromagnetism Qu 6= Qd O(↵) ⇠ 1% Strong physics: Straightforward for lattice Charge Symmetry Violation Nature doesn’t exhibit exact charge symmetry invariance Charge symmetry is broken by: Quark masses md mu ⇠ 0.5% Mp Electromagnetism Qu 6= Qd O(↵) ⇠ 1% Strong physics: Straightforward for lattice “Long” physics: New for lattice simulations Proton–neutron mass splitting Electromagnetic effects: Cottingham sum rule Subtracted dispersive analysis: Walker-Loud, Carlson & Miller, PRL(2012) (Mp Mn ) EM = 1.30(03)(47) MeV Proton–neutron mass splitting Electromagnetic effects: Cottingham sum rule Subtracted dispersive analysis: Walker-Loud, Carlson & Miller, PRL(2012) (Mp Mn ) EM Strong contribution = 1.30(03)(47) MeV Lattice QCD Proton–neutron mass splitting Electromagnetic effects: Cottingham sum rule Subtracted dispersive analysis: Walker-Loud, Carlson & Miller, PRL(2012) (Mp Mn ) EM = 1.30(03)(47) MeV Strong contribution Lattice QCD NPLQCD H2007L RBC H2010L WLCM RM123 H2012L QCDSF-UKQCD H2012L Shanahan et al. H2013L BMW H2013L -6 -4 -2 HM p-MnLstrong @MeVD 0 Current Status 4 BMW (2013) HM p-MnLEM @MeVD 3 WLCM 2 1 0 R PE EX -2 T EN IM -1 -5 -4 -3 -2 -1 HM p-MnLStrong @MeVD 0 1 Current Status 4 BMW (2013) HM p-MnLEM @MeVD 3 WLCM 2 1 0 R PE EX -2 T EN IM -1 -5 -4 -3 -2 -1 HM p-MnLStrong @MeVD 0 1 Current Status 4 BMW (2013) HM p-MnLEM @MeVD 3 WLCM 2 1 0 R PE EX -2 T EN IM -1 -5 -4 -3 -2 -1 HM p-MnLStrong @MeVD 0 1 Charge symmetry violations in nucleon parton distributions Partons Fast-moving bike: Distribution of momenta carried by components Partons 0.6 u(x) u ¯(x) 0.5 0.4 0.3 0.2 0.1 0.0 0.0 d(x) ¯ d(x) MSTW@4 GeV2 0.2 0.4 0.6 0.8 1.0 x Fast-moving bike: Distribution of momenta carried by components Fast-moving proton: distribution of momenta carried by quarks Charge symmetry violation in partons Partonic charge symmetry relations p n p n u (x) = d (x) d (x) = u (x) Charge symmetry violation in partons Partonic charge symmetry relations p n p n u (x) = d (x) d (x) = u (x) Let’s appeal to lattice to determine the breaking p u(x) ⌘ u (x) d(x) ⌘ dp (x) n d (x) un (x) Charge symmetry violation in partons Partonic charge symmetry relations p n p n u (x) = d (x) d (x) = u (x) Let’s appeal to lattice to determine the breaking p u(x) ⌘ u (x) d(x) ⌘ dp (x) n d (x) un (x) Lattice can only make contact with moments Z 1 m 1 m 1 m hx i= dx x [q(x) + ( 1) q¯(x)] 0 Parton CSV (quark mass) For small breaking in the u-d quark masses m ⌘ (md hxi u m ' 2 ✓ @hxipu @mu + @hxipu @md ◆ ✓ @hxind @mu + @hxind @md mu ) ◆ Parton CSV (quark mass) For small breaking in the u-d quark masses m ⌘ (md hxi u m ' 2 ✓ @hxipu @mu + @hxipu @md ◆ ✓ @hxind @mu Charge symmetry + @hxind @md mu ) ◆ Parton CSV (quark mass) For small breaking in the u-d quark masses m ⌘ (md hxi hxi u u m ' 2 ✓ @hxipu @mu + @hxipu @md ◆ ✓ @hxind @mu Charge symmetry @hxipu @hxipu 'm + @mu @md + @hxind @md mu ) ◆ Parton CSV (quark mass) For small breaking in the u-d quark masses m ⌘ (md hxi hxi u u m ' 2 ✓ @hxipu @mu + @hxipu @md ◆ ✓ @hxind @mu Charge symmetry @hxipu @hxipu 'm + @mu @md How does much does the up quark momentum fraction change if I make the up quark a bit lighter? + @hxind @md mu ) ◆ Parton CSV (quark mass) For small breaking in the u-d quark masses m ⌘ (md hxi hxi u u m ' 2 ✓ @hxipu @mu + @hxipu @md ◆ ✓ @hxind @mu + @hxind @md mu ) ◆ Charge symmetry @hxipu @hxipu 'm + @mu @md How does much does the up quark momentum fraction change if I make the up quark a bit lighter? How does much does the up quark momentum fraction change if I make the down quark a bit heavier? QCDSF-UKQCD Lattices Bietenholtz et al. PRD(2011) Strange quark mass Tune lattice parameters such to have exact SU(3) symmetry at the physical average (light) quark mass lat phys mq = (mu + md + ms ) /3 Physical point Symmetric Line ms = mu = md Lines of constant 3-flavour average quark mass Starting point Light quark mass Hyperon PDF moments Start from exact SU(3) symmetric point hxipu = ⌃+ hxiu = ⌅0 hxis Hence we can estimate relevant derivatives p @hxiu @mu ) hxi u ' ⌅0 hxis 'm ms p hxiu ml @hxipu @mu + , p @hxiu @md @hxipu @md ' 'm ⌃+ hxiu ms ⌃+ hxiu ms p hxiu ml ⌅0 hxis ml Just need to determine hyperon moments about SU(3) symmetric point Charge Symmetry Violation In units of the proton isovector momentum fraction Lattice results for quark-mass dependence of hyperon momentum fractions Horsley et al. (2011) Slopes determine CSV at SU(3) symmetric point Charge Symmetry Violation In units of the proton isovector momentum fraction Lattice results for quark-mass dependence of hyperon momentum fractions Horsley et al. (2011) Using phenomenological momentum fraction and dispersive estimate of quark mass ratio: hxi hxi u = 0.0012(3) d = 0.0010(2) Slopes determine CSV at SU(3) symmetric point Improved estimate: Chiral extrapolation Tree-level operators h ↵(n) (BB q) + (n) (B q B) + O(mq ) counterterms n ⇥ (n) b1 Tr B ⇤ (n) (BB)Tr( i {µ1 µn } ) p . . . p q ⇥ ⇤ (n) b2 Tr B{[ q , B] , M } [[ q , B] , M ] + ⇥ ⇤ ⇥ ⇤ (n) (n) + b3 Tr B [{ q , B}, M ] + b4 Tr B{{ q , B}, M } ⇥ ⇤ ⇥ ⇤ (n) (n) + b5 Tr BB Tr [ q M ] + b6 Tr BB q Tr [M ] ⇥ ⇤ ⇥ ⇤ (n) (n) + b7 Tr B q B Tr [M ] + b8 Tr BM B Tr [ q ] ⇥ ⇤ (n) + b9 Tr BBM Tr [ q ] o ⇥ ⇤ (n) + b10 Tr B q Tr [M B] p{µ1 . . . pµn } Tr Shanahan, Thomas & RDY, PRD(2013)114515 Tr Improved estimate: Chiral extrapolation Loops Tree-level operators h ↵(n) (BB q) + (n) (B q B) + O(mq ) counterterms n ⇥ (n) b1 Tr B ⇤ (n) (BB)Tr( i {µ1 µn } ) p . . . p q ⇥ ⇤ (n) b2 Tr B{[ q , B] , M } [[ q , B] , M ] + ⇥ ⇤ ⇥ ⇤ (n) (n) + b3 Tr B [{ q , B}, M ] + b4 Tr B{{ q , B}, M } ⇥ ⇤ ⇥ ⇤ (n) (n) + b5 Tr BB Tr [ q M ] + b6 Tr BB q Tr [M ] ⇥ ⇤ ⇥ ⇤ (n) (n) + b7 Tr B q B Tr [M ] + b8 Tr BM B Tr [ q ] ⇥ ⇤ (n) + b9 Tr BBM Tr [ q ] o ⇥ ⇤ (n) + b10 Tr B q Tr [M B] p{µ1 . . . pµn } Tr Shanahan, Thomas & RDY, PRD(2013)114515 Tr Improved estimate: Chiral extrapolation Loops Tree-level operators h ↵(n) (BB q) + (n) (B q B) + O(mq ) counterterms n ⇥ (n) b1 Tr B ⇤ (n) (BB)Tr( i {µ1 µn } ) p . . . p q Tr ⇥ ⇤ (n) b2 Tr B{[ q , B] , M } [[ q , B] , M ] + ⇥ ⇤ ⇥ ⇤ (n) (n) + b3 Tr B [{ q , B}, M ] + b4 Tr B{{ q , B}, M } ⇥ ⇤ ⇥ ⇤ (n) (n) + b5 Tr BB Tr [ q M ] + b6 Tr BB q Tr [M ] ⇥ ⇤ ⇥ ⇤ (n) (n) + b7 Tr B q B Tr [M ] + b8 Tr BM B Tr [ q ] ⇥ ⇤ (n) + b9 Tr BBM Tr [ q ] o ⇥ ⇤ (n) + b10 Tr B q Tr [M B] p{µ1 . . . pµn } Tr Shanahan, Thomas & RDY, PRD(2013)114515 Phiala Shanahan, U. Adelaide Chiral extrapolation of CSV Using SU(3) symmetry, we can fit isospin symmetric lattice results for hyperons No new parameters in EFT to determine CSV Shanahan, Thomas & RDY, PRD(2013)094515 Chiral extrapolation of CSV Using SU(3) symmetry, we can fit isospin symmetric lattice results for hyperons No new parameters in EFT to determine CSV Our result hxi hxi Shanahan, Thomas & RDY, PRD(2013)094515 u = 0.0023(7) d = 0.0017(4) CSV Distributions We only get one moment from the lattice Simple parameterisation: MRST hxi q = q x 1/2 (1 x)4 (x 1/11) Constrained with lattice CSV moments RY, Shanahan & Thomas, 1312.4990[nucl-th] NuTeV Experiment NuTeV Experiment Paschos-Wolfenstein ratio RPW = ⌫A NC ⌫A CC ⌫ ¯A NC ⌫ ¯A CC ⌫ ⌫¯ & neutral current charged current NuTeV: indirect measure of this ratio With Exact charge symmetry Vanishing partonic strangeness s(x) s¯(x) Isoscalar nucleus PW ratio direct measure of weak mixing angle RPW 1 ! 2 sin2 ✓W 2 NuTeV & sin ✓W Reported discrepancy from the Standard Model Relies on assumption that CSV is negligible Back to NuTeV Correction to the Paschos-Wolfenstein ratio from CSV ✓ ◆ 1 7 hxi u hxi d 2 CSV RPW = 1 sin ✓W 2 3 hxiu + hxid Our result + CSV from QED parton evolution Reduce NuTeV Standard Model discrepancy by ~1-sigma Back to NuTeV Correction to the Paschos-Wolfenstein ratio from CSV ✓ ◆ 1 7 hxi u hxi d 2 CSV RPW = 1 sin ✓W 2 3 hxiu + hxid Our result + CSV from QED parton evolution Reduce NuTeV Standard Model discrepancy by ~1-sigma Further corrections: Non-isoscalar nucleus, strangeness see Bentz, Cloet, Londergan & Thomas PLB(2010) PVDIS@6GeV PVDIS@6GeV See X. Zheng yesterday PVDIS: CSV? Stolen from P. Souder (JLab gamma-Z boxing, Dec’13) PVDIS: CSV? Stolen from P. Souder (JLab gamma-Z boxing, Dec’13) x = 0.295, Q2 = 1.9 GeV2 AP V ' AP V 0.003 PVDIS: CSV? Stolen from P. Souder (JLab gamma-Z boxing, Dec’13) x = 0.295, Q2 = 1.9 GeV2 AP V ' AP V 0.003 Don’t worry about it! Melnitchouk & Hobbs PRD(2008) PVDIS: CSV Lattice: (u d )/2 ' 0.20 ± 0.06 Summary Effects of charge symmetry violation are becoming increasingly significant in precision studies Great progress in nucleon structure from lattice QCD Unambiguously resolved CSV parton moments in lattice QCD Reduces the NuTeV anomaly Could improve sensitivity of future SM tests: eg. SoLID Didn’t show: strange ffs, spin-dep. parton CSV Future Improved systematic control of things I’ve discussed Electromagnetic corrections in parton distributions Lattice calculations of “disconnected” terms: eg. strangeness Feynman–Hellmann technique Thanks Phiala Shanahan, Tony Thomas, James Zanotti & QCDSF-UKQCD Collaboration Spin-dependent CSV ~1% correction to the Bjorken sum rule Cloet et al., PLB(2012) Linear Chiral Shanahan, Thomas & RDY, PRD(2013)094515 Connected Spin Contributions • Energy shift v Linear terms give: ulatt conn = 0.990(20) dlatt conn = 0.313(14) Recall 3-point results: • Rough agreement • Possible excited state contamination in 3-point function results? ulatt conn = 0.911(29) dlatt conn = 0.290(16) Connected Spin Contributions • Energy shift v Linear terms give: ulatt conn = 0.990(20) dlatt conn = 0.313(14) Recall 3-point results: • Rough agreement Alex Chambers, • Possible excited state contamination in 3-point function results? U. Adelaide ulatt conn = 0.911(29) dlatt conn = 0.290(16) Disconnected Spin Contributions SU(3) symmetric point, m⇡ ⇡ 470 MeV 3 dlatt disc = 3 ulatt disc = ZA = 0.867(4) 0.061(122) 0.030(126) ulatt disc = dlatt disc = slatt disc = 0.015(41) udisc = ddisc = sdisc = 0.013(36) Tensor Charge - Disconnected SU(3) symmetric point, m⇡ ⇡ 470 MeV latt 3 qdisc = 0.009(79) ZTMS (µ = 2 GeV) = 0.995(1) qdisc = 0.003(26) BMW QCD+QED Lattice calculation BMW QCD+QED Lattice calculation BMW QCD+QED Lattice calculation Some lattice specs:
© Copyright 2024 ExpyDoc