Presentation

Gene duplication and allelic
diversity for adaptation to high
soil boron
Boron Toxicity
240 mM
67 mM
8 mM
Adelaide
Boron in South Australian soils
Extractable B (mg/kg)
0
• SA soils are of marine origin
and shallow
20
40
60
80
100 120
0-10
10-20
• B generally higher in subsoil
than the root zone
Soil
20-30
Depth 30-40
(cm)
40-50
50-60
60-70
70-80
80-90
90-100
Cartwright et al. (1987)
http://www.dwlbc.sa.gov.au/land/soil/
Boron Toxicity
Deficiency the
predominant
issue in northern
regions
Toxicity
http://www.ausgraintech.com/
16% yield advantage in tolerant lines
(233 trials over 12 years) McDonald 2012
Boron toxicity associated with...
Root stunting
Leaf symptom expression
-B
+B
+B
Genetic Variation: Barley
• Tolerance primarily based
on boron efflux in roots
intolerant
tolerant
intolerant tolerant intolerant tolerant
Low boron
High boron
Barley QTL
4H
Clipper (intolerant)
X
Sahara (tolerant)
6H
2H
3H
Jefferies et al., 1999
Barley backcross lines
- BT QTL
+ BT QTL
Map Based Cloning
rice/br
achy
barley/
wheat
tolerance
Trait/
locus
barley/
wheat
rice/
brachy
Candidate
4H tolerance gene: HvBot1
• HvBot1, a borate efflux transporter
-anion permeable channel
Basis of Allelic Difference:
• Bot1 tandemly duplicated in Sahara
• Bot1 in Sahara highly expressed
Clipper
Intolerant
Bot1
Sahara
Tolerant
Bot1
leaf tip
root
Science 2007
Bot1
Bot1
Bot1
Guttation and boron?
1962
1997
6H tolerance gene: HvNIP2;1
•
•
•
•
HvNIP2;1 multifunctional aquaporin: Influx transporter
Orthologue of rice silicon transporter Lsi1
Clipper and Sahara proteins are identical
Reduced expression allelic basis for tolerance
Boric Acid
Reduced tissue B is achieved by a
combination of transport processes
Boron tolerant
Boron sensitive
B
NIP2;1: 6H
Bot1: 4H
B
B
Reduced influx
B
B-
B
B-
Greater efflux
B
B
B
Genetic Variation: Wheat
1400
1200
1000
Leaf
boron
[mg/kg]
800
600
400
200
0
Halberd
tolerant
Cranbrook
intolerant
Wheat QTL
7B
Cranbrook (intolerant)
X
Halberd (tolerant)
7D
4A
Jefferies et al., 2000
Bo1 region
LMA:
Late maturity
α-amylase
Pratylenchus neglectus
resistance on 7A
Bo1 region
O. sativa
BEC
NAM
SBE
NSF
GMC
ABC
CHZ
CAT
GST
PPK
SPA
CRF
HMG
HY1
UN1
CBE
MYB
CAL
ALS
PSY
PNH
Yellow flour
colour
B. sylvaticum
ABC
CHZ NAM
SBE
NSF
GMC
CHZ CHZ WAK CHZ
CAT
Xa21
GST
PPK
SPA
CRF
UN2
SEN
HMG
HY1
CRI
UN1
The challenge:
Low recombination in Cranbrook x Halberd
B. distachyon
SBE NSF GMC CHZ CHZ WAK CHZ CAT Xa21
Gene not present in rice
GST PPK
SPA
CRF
UN2 SEN
HMG HY1
CRI
UN1
SP1
CL1
CL2
CBE MYB
Gene not present in Brachypodium
SRP
TS1
TS2
DR1 DR2
LRR RGE
Different Res-genes
Gene sequence not in any databases
4
Genetic map
Cranbrook x Halberd
1
1
CAL RFP Os11 PSY
3
Lr14a
Gene not present at all in Langdon (BAC library screen)
Lr68
MYB
Bo1
region
SBE
NSF
GMC CHZ
CAT, GST, PPK, SPA,
Gene
eventually
HMG, CRF,
UN2, SEN
CBS
NIPL
identified
in an Ae. Tauschii
TaBot1L
(utilising
work of Jan Dvorak et al.)
Thorsten Schnurbusch, Margaret Pallotta
(Evans
Lagudah)
BAC
Wheat boron transporter
8.8 kb
Anion
permeable
channel
660 aa
-85% similar to
Barley 4H tolerance
Gene HvBot1
-Similar to HvBot1:
but not direct
orthologue
Maria Hrmova, ACPFG
EMS mutants
• Mutated population in Halberd
• Exonic mutant 405A: 1 aa change
Low boron
Ala-Val
High boron
50
Ha
45
40
35
30
25
20
15
EMS-405
10
5
Ha
wt
mut
0
Ha wt
mut
-20
0
20
40
60
80
100
Allelic diversity
No 7A genome copies
RL (mm)
Root Growth
Boron (mM)
Expression
A genome, rare allele
Absent in most cultivars and A-genome progenitors
Identified in a landrace from the Mediterranean
Halberd-like
*
G
4A
G61450 (Greek)
Higher gene expression
 high tolerance
25000.0
20000.0
Expression 4A
15000.0
10000.0
- 1 synonomous SNP with
Halberd 7B
- No evidence of translocation
- Dispersed duplication of 7B
5000.0
0.0
7B
7B
7B
4A
Allelic distribution in Australia
Deficiency the
predominant
issue in northern
regions
Toxicity
http://www.ausgraintech.com/
Allelic distribution in Australia
Advanced breeding
lines and released
cultivars
Mix of southern
and northern
breeding programs
(Australian Grain Technologies)
• Indirect selection against tolerance allele in areas of low
boron (northern regions)
• Boron tolerant genotypes are always boron inefficient
under low boron conditions
Origins of boron tolerance in wheat
Boron toxicity observed
Tolerance allele source
Hypothesized dispersion
Tolerance alleles found
Able to follow dispersion from
Mediterranean to Australia and
South America
Boron tolerance appears to be of tetraploid origin
- Introgression through the Cretan landrace- Currarwa (20th C)- Halberd
Conservation of the tetraploid-derived segment in modern wheats
- barrier to recombination
- Issue for utilisation of important linked loci, e.g. late maturity alpha-amylase
Chromosome 7L
A Street Party- everyone welcome
Distal 7L:
7A Sr22 ,
PmG16, Rlnn1,
Pch2
7B Rht13,
Bo1, LMA,
Lr14, Pm5, Yr39,
Tan spot, Yfc
7D Sr25, Pch1,
Gb3
7E Lr19 , Fhb
LMA = Late Maturity Alpha-amylase
• Genetic defect- widespread in Australian wheat germplasm
• α-amylase mid way in grain development (quality)
• Halberd 7BL tolerance locus rare source of non-LMA (desirable
form)
Often triggered by
temp shock
Pollination
20 days
Phenotype difficult
- very slow
- no visible difference
- not all grains in a spike
- Rht genes interfere
with trait expression
30 days
maturity germination
- LMA
+ LMA
Barrero et al 2013
The Boron-LMA problem?
• Halberd 7BL non-LMA locus (rare)
• desirable in all environments
✓
• Halberd 7BL Boron tolerance
• Desirable in southern environments
• Undesirable in northern environments
✓
✗
Problem: low recombination
- tetraploid origin (Cretan Landrace)
- considerable haplotype conservation
Rare recombinant identified:
✓
Bo1 null
non LMA
X
LMA – positional cloning
Margie Pallotta
Bo1
G1
G2
G3
G4
G5
LMA
G6
G7
G8
G9
G10
M1
M2
G11
Rice -absent
Brachypodium
- absent
M1
?
?
M1
?
M2
….......
G11
?
?
?
M2
wheat
BAC M T P
Odd-Arne Olsen
Norway
7B sequencing
IWGSC
Tolerance mechanisms
Wheat vs. barley:
• Tolerance arose through divergent
evolution of paralogous genes
• Transcript level variation a common
determinant
• Tissue specificity and inducibility
differ
• In wheat, comparatively broad allelic
variation provided adaptation to
diverse environments
Tolerance mechanisms
Wheat:
•
•
•
•
Recent origin – post-domestication
Impact of selection by early farmers
Role of duplications
Recent importance of landraces in
development of locally adapted
varieties
• Strong allelic selection. Matching
alleles to environments is critical
Thanks to…
Margie Pallotta
Julie Hayes
Alison Hay
Thorsten Schnurbusch
Ute Baumann
Nick Collins
Dave Edwards
Andrea Pohlen
Anzu Okada
Peter Langridge
Haydn Kuchel, AGT
[email protected]