Compatible Discrete Operators Schemes for the Stokes Equations Jérôme Bonelle1,2 and Alexandre Ern2 1 2 EDF R&D Université Paris Est - CERMICS (ENPC) WCCM XI - ECCM V - ECFD VI J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes July, 24th, 2014 - Barcelona 1 / 23 Context → EDF has been developing several in-house Computational Fluid Dynamics codes for 30 years Code_Saturne (open-source) single-phase flow solver based on co-located Finite Volume schemes (since 1998) Approach close to commercial codes like Star-CD or FLUENT → Reopen numerical work to improve numerical methods Axes: physical fidelity, robustness on complex geometry, efficiency New developments based on structure-preserving schemes → The Compatible Discrete Operator (CDO) framework Inspired by seminal ideas of Tonti and Bossavit Elliptic problems (B. & Ern, M2AN, 2014) Stokes equations (submitted, in revision) Navier-Stokes (in progress) J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes July, 24th, 2014 - Barcelona 2 / 23 Outline 1 Compatible Discrete Operator (CDO) Framework 2 Discretization of the Stokes Equations 3 Analysis of the Vertex-based Schemes 4 Numerical Results J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes July, 24th, 2014 - Barcelona 3 / 23 De Rham Complex → Degrees of freedom (DoFs) are defined by De Rham maps → Definition of DoFs in agreement with the physical nature of fields Potential (scalar) at a point Flux (vector) curl along a line RE (u)|e = RV (p)|v = p(v ) V Circulation (vector) grad GRAD e div across a surface RF (φ)|f = u · τe CURL E f inside a volume RC (s)|c = φ · νf F Density (scalar) DIV c s C Discrete differential operators 1 Metric-free operators: algebraically defined by incidence matrices 2 Commuting property with De Rham’s maps 3 GRAD · RV = RE · grad, CURL · RE = RF · curl, DIV · RF = RC · div Cochain complex: CURL · GRAD ≡ 0F and DIV · CURL ≡ 0C J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes July, 24th, 2014 - Barcelona 5 / 23 Two Meshes: a Primal and a Dual Mesh Primal mesh : M = {V, E, F, C} Dual mesh : M = {V, E, F, C} → Carry the information on geometry, material properties and BCs → Only for defining the scheme → Several definitions: barycentric, voronoï. . . → Only mesh seen by the end-user → One-to-one pairing: v ↔ c˜(v ), e ↔ f˜(e), f ↔ ˜e (f ) and c ↔ v˜ (c) → Transfer of orientation: τ e → ν f˜(e) and ν f → τ ˜e (f ) v• ◦ ◦ ◦ ◦ v ˜(c1 ) • ◦ τe ◦ • τ e˜(f) ◦ ˜e(f) v ˜(c2 ) ◦ J. Bonelle and A. Ern (EDF R&D / CERMICS) νf v ˜(c3 ) • ν ˜f(e) ˜f(e) f ˜c(v) e τ e˜(f) • v ˜(c4 ) CDO for Stokes July, 24th, 2014 - Barcelona 6 / 23 Discrete Setting DoFs on the dual mesh V, E, F, C are also defined by de Rham maps V GRAD E CURL F DIV C C DIV F CURL E GRAD V Duality Products Adjunction properties ˜ ∈ {V˜C, E F˜, F˜E , C˜V } XY a, b ˜ := XY − GRAD(p), φ ax by˜ (x) = a b t CURL(u), v x∈X where a ∈ X , b ∈ Y, X ∈ {V, E, F, C} J. Bonelle and A. Ern (EDF R&D / CERMICS) − DIV(φ), p CDO for Stokes ˜ = p, DIV(φ) EF ˜ VC ˜ = u, CURL(v) FE ˜ = φ, GRAD(p) CV July, 24th, 2014 - Barcelona ˜ EF ˜ FE 7 / 23 Discrete Hodge Operators HXα˜Y V E F C HVα˜C HEαF˜ HFα˜E HCα˜V C F E V • Link DoF spaces in duality X Y˜ ∈ {V˜C, E F˜, F˜E , C˜V } • Depend on a metric induced by a material property α • HX Y˜ is built up from a cellwise assembly process α • Definition hinges on two local design properties 1 2 Stability Upper/lower eigenvalues are uniformly bounded P0 -consistency Exactly represents piecewise constant field on each c ∈ C • Multiple definitions → multiple schemes J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes July, 24th, 2014 - Barcelona 8 / 23 Synthesis of the Discrete Setting V GRAD HVα˜C C E CURL HEαF˜ DIV F F DIV HFα˜E CURL E C HCα˜V GRAD V Discrete Differential Operators Discrete Hodge Operators Topological laws Constitutive relations Error-free Approximation Unique definition Multiple definitions J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes July, 24th, 2014 - Barcelona 9 / 23 CDO and Some Related Approaches HO/LO Setting Element Meshes Key Op. CDO HFV MFV DDFV MFD VEM HHO FEEC MSE LO NC Poly. P+D disc. Hodge LO NC Poly. P grad reco. LO NC Poly. P+D+ grad/div reco. LO/HO C Poly. P inner prod. HO C Poly. P inner prod. HO NC Poly. P grad reco. HO C Spe. P cochain proj. HO/LO = Higher-order/Lower-order NC/C = nonconforming/conforming reconstruction operator Poly. / Spe. = Polyhedral / Specific (i.e. tetrahedral, hexahedral meshes) P/D/ = primal / dual / diamond meshes are explicitly considered • HFV/MFV Hybrid/Mixed Finite Volume: Droniou, Eymard, Herbin, Gallouët • DDFV Discrete Duality Finite Volume: Andreianov, Hubert, Krell et al. • MFD Mimetic Finite Differences & VEM Virtual Element Method: Beirão Da Veiga, Brezzi, Lipnikov, Shashkov, Manzini et al. • HHO Hybrid High-Order : Di Pietro & Ern • FEEC Finite Element Exterior Calculus: Arnold, Falk, Whinteret al. • MSE Mimetic Spectral Element: Kreeft, Gerritsma, Pahla et al. J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes July, 24th, 2014 - Barcelona 10 / 23 Stokes Equations for Incompressible Flows Three-field Curl Two-field Curl Classical Let u be the velocity, p the pressure, ω the vorticity and f the external load (u, p) (u, p) (u, ω, p) − ∆(u) + grad(p) =f − div(u) =0 curl curl(u) + grad(p) =f − div(u) =0 =0 − ω + curl(u) curl(ω) + grad(p) = f − div(u) =0 J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes (MFV) Droniou & Eymard (MFD) Beirão da Veiga et al. (DDFV) Krell & Manzini (HFV) Di Pietro & Lemaire (FE) Bramble & Lee (FE) Abboud et al. (FV) Eymard et al. (FE) Nédélec; Dubois (Spectral) Bernardi & Chorfi (MSEM) Kreeft & Gerritsma (DDFV) Delcourte & Omnes July, 24th, 2014 - Barcelona 12 / 23 Overview of CDO Schemes for Stokes Vertex-based Pressure Cell-based Pressure Two-field curl formulation • Pressure DoFs ∈ V • Velocity DoFs ∈ E (circulation) System size: #V + #E Three-field curl formulation • Pressure DoFs ∈ V (1:1 with C) • Velocity DoFs ∈ F (flux) • Vorticity DoFs ∈ E System size: #C + #F + #E Main Features → Exact mass and momentum balances on polyhedral meshes → 1st order CV rate for smooth enough solutions on velocity, vorticity and the pressure gradient → Robust treatment of the external load with large divergence-free or curl-free part J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes July, 24th, 2014 - Barcelona 13 / 23 Two-field Curl Vertex-based Pressure Schemes u, p ∗ := pρ , (ρ ≡ 1 and µ ≡ 1) curl(µ curl(u)) + ρ grad(p ∗ ) = ρf − div(ρu) = 0 p∗ ∈ V u∈E GRAD • Pressure DoFs: p∗ at primal vertices • Velocity DoFs: u at primal edges • HEρF˜ and HFµ˜E CURL HEρF˜ HV˜C Exact mass balance C HFµ˜E Svb ∈ F DIV C DIV F CURL E HC˜V GRAD V Exact momentum balance CURL · HF˜E · CURL(u) + HE F˜ · GRAD(p∗ ) µ − DIV · HE F˜ (u) ρ J. Bonelle and A. Ern (EDF R&D / CERMICS) ρ CDO for Stokes = Svb (f ) = 0C July, 24th, 2014 - Barcelona 14 / 23 Cell-based Pressure Schemes Three-field Curl φ := ρu, ω ∗ := µω, p ∗ := p ρ • • • • −1 ∗ −1 − µ ω + curl(ρ φ) = 0 ρ−1 curl(ω ∗ ) + grad(p ∗ ) = f − div(φ) = 0 GRAD V Exact mass balance ω∗ ∈ E CURL DIV F DIV φ∈F ˜ HµE F −1 HV˜C C Pressure DoFs: p∗ at dual vertices Velocity DoFs: φ at primal faces Vorticity DoFs: ω ∗ at primal edges ˜E HEµF˜−1 and HFρ−1 ˜E HF ρ−1 Scb ∈ E CURL Vorticity definition C HCV˜ GRAD p∗ ∈ V Exact momentum balance EF ˜ ∗ F˜ E − H = 0F −1 (ω ) + CURL · Hρ−1 (φ) µ F˜ E ∗ ∗ H −1 · CURL(ω ) + GRAD(p ) ρ − DIV(φ) J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes = Scb (f ) = 0C July, 24th, 2014 - Barcelona 15 / 23 Discrete Poincaré Inequalities Stability & well-posedness hinge on these inequalities + Hodge stability → Mesh regularity: Assume there exists a shape-regular simplicial submesh ax 2 → • |||a|||22,Xc = x∈Xc hc3 ( |x| ) where a ∈ X ∈ {V, E, F} and X ∈ {V, E, F} • |||a|||22,X collects local contributions 1 Discrete Poincaré-Wirtinger inequality There exists CP > 0 s.t. ∀p ∈ V verifying p, HV˜C (1) V˜C = 0. (0) 2 (0) |||p|||2,V ≤ CP |||GRAD(p)|||2,E Discrete Poincaré inequality for CURL There exists CP > 0 s.t. ∀u ∈ E verifying ˜ (v) u, HEαF EF ˜ = 0 where v ∈ Ker CURL Sketch (1) (1) |||u|||2,E ≤ CP |||CURL(u)|||2,F → Consider conforming reconstructions on polyhedral meshes (Christiansen) • Use the compatibility property with the differential operators → Use the continuous Poincaré inequalities J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes July, 24th, 2014 - Barcelona 17 / 23 Error Estimates α, X Y˜ (A) = 0, ∀A ∈ [P0 (C)]3 XY ˜ · R (A) α, X Y˜ (A) := RY (α A) − Hα X P0 -consistency of HXα Y˜ 1st order CV on smooth solutions Let (u, p) be the exact solution and ω = curl(u), g = grad(p) Let (u, p) solve the discrete system and ω = CURL(u), g = GRAD(p) Pressure Gradient Vorticity Velocity where |||•|||α := |||RE (g) − g)|||ρ E |||RF (ω) − ω|||µ E + ||| µ, F ˜E (ω)|||(µ)−1 |||RE (u) − u|||ρ Y ˜ •, HX α (•) ˜ XY ˜ · R (f ) (PL) HEρ F E E + ||| µ, F ˜E (ω)|||(µ)−1 + ||| ρ, E F ˜ (u)|||(ρ)−1 , |||•|||(α)−1 := Y ˜ −1 (•), • (HX α ) Y ˜ EF ˜ F˜ E for HX α ∈ {Hρ , Hµ } E := ||| ρ, E F ˜ (curl ω)|||(ρ)−1 Better when curl(ω) grad(p) ⇒ Large curl-free part E := ||| ρ, E F ˜ (grad p)|||(ρ)−1 Better when grad(p) curl(ω) ⇒ Large divergence-free part Svb (ρ, f ) (DL) RF (ρf ) ˜ XY J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes July, 24th, 2014 - Barcelona 18 / 23 3D Taylor-Green Testcase Analytical solutions for p, u and ω are a product of sin and cos Vertex-based Pressure Scheme • • • • BCs: Fully Natural u · ν and ω ∗ × ν HEρF˜ and HFµ˜E built with the Discrete Geometric Approach (Codecasa et al.) Algorithm: Uzawa - Augmented Lagrangian (Preconditioned CG as inner solver) System size: nsys = #E + #V → Influence of the Primal external load (PL) and Dual external load (DL) → Mesh sequences from the FVCA benchmark Prismatic meshes J. Bonelle and A. Ern (EDF R&D / CERMICS) Polyhedral meshes CDO for Stokes Polyhedral meshes with hanging nodes July, 24th, 2014 - Barcelona 20 / 23 Convergence Rates J. Bonelle and A. Ern (EDF R&D / CERMICS) External Load Load Er(p) Er(u) Er(ω) (PL) 1.8 2.0 1.9 (DL) 2.0 2.0 1.9 (PL) 1.7 1.8 1.7 (DL) 2.1 1.8 1.7 (PL) 1.8 1.1 1.0 (DL) 2.2 1.1 1.0 CDO for Stokes July, 24th, 2014 - Barcelona 21 / 23 f = χu curl(Ψu ) + χp grad(θp ) Effectofofthe theDiscretization Discretization theExternal ExternalLoad Load Effect ofofthe curl-free divergence-free Prism Meshes with Polygonal Basis Prism Meshes with Polygonal Basis The Hodge-Helmholtz decomposition f is not in the discretization curl curl(u) ρ grad(p) +p χgrad(θ curl ·µ ·µ curl(u) ++ ρ grad(p) == χof curl(Ψ +)used χ u curl(Ψ p grad(θ uχ p) p) u) u � � χu χp large divergence-free (DL) RF suited χp(f 1isand variable χu χu χ= 1better and variable p) = �� �� p 104104 103103 � � χu large curl-free F ˜ R (f χu χ=u 1= 1 p and (PL) variable HEvariable is better suited E χp)χand χρf ρf 101 101 102102 Er(u) Er(u) Er(p) Er(p) 100 100 101101 100100 10−1 10−1 10−1 −1 10 10−2 10−2 10−2 10−2 104104 105 105 #V#V (DL) χ= (DL) χ{ ={ 105 105 #E #E 2 4 4 {1, : 10: 210 , 2 , χ:p10∈ } 4 } 10 , 10 } and χu = 1 : 10 : CDO 1,: 1,for Stokes : 10: 210 , 2 , : 10: 410 } 4 } July, 24th, 2014 - Barcelona 22 / 23 2 4 χp = 1 and χ(PL) {1, χ= u ∈ (PL) χ10{ = ,{10 :}1,: 1, J. Bonelle and A. Ern (EDF R&D / CERMICS) 104 104 Thank you for your attention Contact: bonellej “at” cermics.enpc.fr Homepage: http://cermics.enpc.fr/~bonellej/home.html 1 Analysis of Compatible Discrete Operator Schemes for Elliptic Problems on Polyhedral Meshes, B. & Ern, M2AN, 2014 2 Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes, B. & Ern, 2014 (in revision, IMA JNA), HAL preprint J. Bonelle and A. Ern (EDF R&D / CERMICS) CDO for Stokes July, 24th, 2014 - Barcelona 23 / 23
© Copyright 2025 ExpyDoc