Paper - Esri

EXTRACTION OF FOREST INVENTORY PARAMETERS
AND
3D MODELING FROM AIRBORNE LIDAR
LiDAR point cloud
Vinod Kumar
Indian Forest Service
Esri International User Conference, 2014 San Diego, USA
LiDAR Technology
(Light Detection And Ranging)
1.Laser scanner
2.Differential GPS
3.Inertial
Measurement Unit
(IMU)
4.On board computer
to store data
Trees in
Point
cloud
Trees in Point Cloud
Point cloud & normalised point cloud
Rasterization
of Point cloud
DSM
Single tree in point cloud & in CHM
Single tree in normalized point cloud
Single tree in CHM
Canopy Height Model in 3D
Research Objectives
1. Tree peak identification and crown
delineation
2. Extraction of forest inventory parameters
3. Species classification
4. Carbon estimation
5. 3D Forest Modeling
Study Area
•Area = 1.5 KM2, ortho A=1.3 KM2
•92 % forest
•Mainly coniferous forest
Pinus uncinata
•Slope 10° to 35° avg slope=14.5°
•Undulating terrain
•Frequent landslides
DTM
DSM
Ortho-image with elevation from DTM
LiDAR derived DTM
LiDAR derived DSM
Actual Picture
DSM
Tree Peak detection in enveloping
canopy surface
CHM
Smooth CHM
Smoothing CHM
Filter size 0.45 m
sCHM3
Filter size 0.75 m
sCHM5
Filter size 1.05 m
sCHM7
Smooth CHM
Filter size 1.35 m
sCHM9
Peaks identified in sCHM9=54,194
Peaks identified in sCHM7=92,867
Peaks identified in sCHM3=164,787
Final Peaks
=128,918
Filter Size (m)
Height cut off (m)
1.35
>20
1.05
>16 and <= 20
0.75
>11 and <=16
0.45
<=11
Tree peak identification in point cloud
No. of sample
trees
275
Filter size- 0.45 m
Filter size- 0.75 m
Filter size- 1.05 m
Filter size- 1.35 m
No. tree
peaks
identified
264
Accuracy %
96
Canopy Height Model
SEGMENTATION
Peak identification
Binary Gap Mask
Region Grow Segmentation
Polygon Smoothing
Thiessen Polygon Segmentation
Thiessen Segmentation on
Ortho- image
Thiessen Polygons
Thiessen Polygons updated with Gaps
and
applying polygon smoothing
D Value of Segmentation
(fraction of error)
1:1 correspondence
Point cloud of 1000 random trees extracted to visually
see the result of segmentation in 3D
Tree Height
Canopy Volume
Tree canopy enveloping surface
Canopy Volume contained within these two surfaces
Tree Canopy base
Touching surface
Canopy Base Height
CBH is calculated as average height of canopy base touching surface
C
Canopy base
basetouching
touchingsurface
surface
Canopy
• INVENTORY_DATA
Accuracy of extracted parameters
Parameter
R2
RMSE
CPA (Region growing smooth) 0.87
3.67 m2
CPA (Thiessen smooth)
0.90
3.16 m2
Canopy base height (CBH)
0.73
0.86 m
Canopy tilt
0.57
3.26 degree
Descriptive Statistics
Variable
n
Mean
Minimum Maximum
Std. deviation
CHM height (m)
126,653
9.82
0.03
34.53
4.12
CPA (m²)
126,653
6.73
0.32
108.79
5.47
Avg CPA height (m)
126,653
7.69
2
26.53
3.39
Canopy Volume (m³)
126,653
37.91
0.05
1211.3
46.82
Crown diameter (m)
126,653
2.74
0.63
11.77
1.03
CBH (m)
126,653
2.76
2
14.85
1.63
CBH/Height
126,653
0.28
1.5
150.45
0.73
Tree_Inclination (degree)
126,653
84.03
8.24
89.98
4.68
SLOPE (degree)
126,653
21
1
87
11
ELEVATION (m)
126,653
1632
1403
2038
124
Tree Density (trees/ha)
126,653
1451
42
5260
611
LidarHits/m²
126,653
122
0
1606
90
LiDAR_Pts/tree
126,653
945
0
55654
1407.09
CanopyDensity(Pts/vol)
126,653
28.18
0
1609.1
26.34
Gap_Percent
126,653
17.41
0
100
21.67
CD/Height
126,653
0.32
0.04
95.88
0.55
Query
Larix
CPA>15 m²
Height>12 m
Canopy Volume>130 m³
P. uncinata: Elevation>1600m
P.sylvestris: Elevation<=1600m
No. of trees
Species distribution
Larix decidua
80000
70000
60000
50000
40000
30000
20000
10000
0
Series1
Larix
Broad
leaved
P.
sylvestris
P. uncinata
3538
9724
45131
69790
Species classification accuracy
Canopy tilt<70 degree in different
Zones
No of
trees
Landslide Zone 75690
Nonlandslide
45778
Zone
Total
121468
Zone
Tilt<70
degree
1303
1.7
673
1.5
1976
1.6
%
Open Canopies in different Zones
Zone
No of
trees
Landslide Zone 75690
Gap%>50
%
7887
10.4
Nonlandslide
Zone
45778
3512
7.7
Total
121468
11399
9.4
Gap %
Close Canopies in different Zones
Zone
No of
trees
Landslide Zone 75690
Gap%=0
%
29358
38.8
Nonlandslide
Zone
45778
17133
37.4
Total
121468
46491
38.3
Regression Models for Carbon
• Model1: carbon= a+b*Height+c*CPA
• Model2: carbon= a+b*Height+c*CanopyVolume
• Model3:carbon=a+b*Height+c*tree_density*Height+d*CPA*Height
=a+Height*(b+C*tree_density+d*CPA)
Model
R2
RMSE (Kg)
Model 1
0.757
12.293
Model2
0.751
12.439
Model3
0.782
11.539
Carbon estimation of Pines in the study
area
No of
Mean
Pines Carbon(Kg)
Carbon
114921
33.16
Total
Carbon
(Tons)
3811
Conclusion
• Tree peaks can be detected
with high accuracy
96 %
Segmentation
Thiessen was found comparable to Region growing
94.2 %
93.5%
Thiessen
Region growing
Tree parameters can
be extracted with
significant accuracy
from LiDAR.
New approach
•Canopy Volume
•CBH
•Canopy tilt
•Canopy Orientation
Carbon Models
It is possible to make
carbon models from
extracted parameters
Model
R2
RMSE (Kg)
Model 1
0.757
12.293
Model2
0.751
12.439
Model3
0.782
11.539
• Species
classification is
possible with
structural and
spatial information
97%
3D forest modeling from inventory
data
• Tree: Location, Species, Height, Inclination, Orientatioion.
Actual Photo
Model Photo
Visualizing degraded forest areas
Visualizing forest path & regeneration
Visualizing inaccessible areas
Visualizing landslide areas
Visualizing species richness
https://www.youtube.com/watch?v=dkfolP-e6Uo
Uses of Forest Inventory
• Working Plan
–
–
–
–
•
•
•
•
•
Growing stock
Biomass, Stock Carbon
Vegetation density
Species distribution
Forest Disturbance
Production Forestry
Forest growth modeling
Predictive Forest modeling
Plantation and regeneration monitoring
Uses of Forest Inventory
• Watershed Management Analysis
• Fire Modeling
• Eco-tourism
[email protected]