STA 4210 – Practise set 2b For all significance tests, use = 0.05 significance level. S.1. A linear regression model is fit, relating fish catch (Y, in tons) to the number of vessels (X 1) and fishing pressure (X2) for a lake over a sample of n=16 years. The model also contains an intercept. Give the appropriate degrees of freedom. dfTotal = ________________ dfRegression = ___________________________ dfError = ____________________________ S.2. In a multiple linear regression model with 2 predictors (X 1 and X2), then SSR(X1)+SSR(X2|X1) = SSTO–SSE(X1,X2) TRUE or FALSE S.3. In simple linear regression, then (X’X) -1 is 2x2. TRUE or FALSE 2 2 2 S.4. In a multiple linear regression model with 2 predictors (X 1 and X2), R ( X 1 ) + RY 2|1 = R ( X 1 , X 2 ) TRUE or FALSE S.5. A multiple regression model is fit, relating Y to X 1, X2, and X3. The regression sums of squares include: SSR(X1) = 400 SSR(X2) = 600 SSR(X3) = 800 SSR(X1,X2) = 700 SSR(X1,X3) = 1000 SSR(X2,X3)=900 SSR(X1,X2,X3)= 1200 SSR(X3|X1,X2) = _________________ SSR(X2|X1,X3) = _______________ SSR(X1,X2|X3) = ___________________ S.6. A researcher reports that for a linear regression model, the regression sum of squares is three times larger than the error sum of squares. Compute R2 for this model R2 = ____________________________________________________ S.7. In multiple regression, when predictor variables are highly correlated, the model is said to display multicollinearity. Effects of multicollinearity include (select all that are appropriate): i) Decreased t-statistics for some of the tests of H 0: k = 0 (k=1,…,p-1) ii) Wider confidence intervals for some of the k (k=1,…,p-1) iii) Inflated standard errors for the least squares estimates of some of the b k (k=1,…,p-1). Q.1. A simple linear regression model is to be fit: Y i = 0 + 1Xi + I . The data are as follows: Complete the following parts in matrix form (Note: SSTO=82): X 0 0 3 3 6 6 Y 14 10 9 7 6 2 p.1.a. X= Y= p.1.b. X’X = X’Y = p.1.c. (X’X)-1 = b= ^ p.1.d. Y = e= p.1.e. MSE = s2{b} = p.1.f. Complete the following tables: ANOVA df Regression Residual Total SS MS F Coefficients Standard Errort Stat Intercept X Q.2. A regression model is fit, relating height (Y, in cm) to hand length (X 1, in cm) and foot length (X2, in cm) for a sample of n=75 adult females. The following results are obtained from a regression analysis of: Y = 0 + 1X1 + 2X2 + ~ NID(0,2) Regression Statistics R Square ANOVA df Regression Residual Total Intercept X1 X2 SS 1105.52 F* F(0.95) #N/A #N/A #N/A #N/A StdErr t* 7.97 #N/A 0.49 0.37 t(.975) #N/A 1793.85 Coeff 74.41 2.38 1.73 MS #N/A #N/A #N/A p.2.a. Complete the tables. p.2.b. The first woman in the sample had a hand length of 19.56cm, a foot length of 25.70cm, and a height of 160.60cm. Obtain her fitted value and residual. Fitted value = _____________________________________ Residual = ______________________________________ p.2.c. Obtain simultaneous 95% Confidence Intervals for 0, 1, and 2 (Hint: z(.9917) ≈2.395) Q.3. Regression models are fit, relating bursting strength of knit fabric (Y) to yarn count (X 1) and stitch length (X2). The following 5 models were fit on centered yarn counts and stitch lengths to reduce collinearity. Model 1: E {Y } = b 0 + b1 x1 Model 2: E {Y } = b 0 + b 2 x2 Model 3: E {Y } = b0 + b1 x1 + b 2 x2 Model 4: E {Y } = b 0 + b1 x1 + b 2 x2 + b3 x12 + b 4 x22 + b 5 x1 x2 Model 5: E {Y } = b 0 + b 0 + b1 x1 + b 2 x2 + b 3 x12 where: x1 = X 1 - X 1 x2 = X 2 - X 2 ANOVA Model1 df Regression 1 Residual 54 Total 55 Model4 df Regression 5 Residual 50 Total 55 SS 20.2509 18.7953 39.0462 MS 20.2509 0.3481 SS 35.7314 3.3148 39.0462 MS 7.1463 0.0663 ANOVA Model2 df 1 54 55 Model5 df 3 52 55 SS 17.4997 21.5466 39.0462 MS 17.4997 0.3990 SS 35.5942 3.4520 39.0462 MS 11.8647 0.0664 Model3 df 2 53 55 SS 34.4914 4.5548 39.0462 MS 17.2457 0.0859 Complete the following parts (all parts are based on the centered values). p.3.a. Based on model 3, test whether either centered yarn count (x 1) and/or centered stitch length (x2) are associated with bursting strength. H0: _______________ HA: ________________ Test Statistic: ___________________ Rejection Region: _____________ p.3.b. Compute SSR ( x1 ) = ____________ SSR ( x2 | x1 ) = ______________________ RY2 2|1 = ________________________ SSR ( x2 ) = ____________ SSR ( x1 | x2 ) = ______________________ RY21|2 = ________________________ p.3.c. Based on models 4 and 5, test whether after controlling for yarn count, stitch length, and squared yarn count, that neither squared stitch length or the cross-product between yarn count and stitch length are associated with bursting strength. That is H0: 4 = Test Statistic: ____________________________________ Rejection Region: ______________________________ ^ Q.4. You obtain the following spreadsheet from a regression model. The fitted equation is Y = -2.67 + 3.75 X Conduct the F-test for Lack-of-Fit. n = ______________ c = _______________ X 2 2 4 4 6 6 Source Lack-of-Fit Pure Error Y 3 5 12 16 18 20 Ybar(Grp) Y-hat Pure Error Lack of Fit df SS MS F F(0.05) Q.5. A firm that produces technical manuscripts is interested in the relationship between cost of correcting typographical errors (Y, in dollars) and the total number of galleys (pages, X). They wish to determine whether a regression-through-the-origin model is appropriate. You are given the following results for the model Y = X + : Y 1 28 2 13 1 91 1 78 2 50 4 46 5 40 4 57 3 24 1 77 X 7 12 10 10 14 25 30 25 18 10 Y-hat 126.19 216.32 180.27 180.27 252.38 450.67 540.81 450.67 324.48 180.27 e 1.81 -3.32 10.73 -2.27 -2.38 -4.67 -0.81 6.33 -0.48 -3.27 å X = 161 å Y = 2904 å X = 3163 å Y = 1028088 å XY = 57019 å ( X - X ) = 571 å (Y - Y ) = 2904 å ( X - X )(Y - Y ) = 10265 å e = 214 n = 10 2 2 2 2 2 b1 = ____________ MSE = ________ s {b1} = ________ 95% CI for b1 : _____________________ Critical Values for t, 2, and F Distributions F Distributions Indexed by Numerator Degrees of Freedom CDF - Lower tail probabilities df | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | t.95 6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753 1.746 1.740 1.734 1.729 1.725 1.721 1.717 1.714 1.711 1.708 1.706 1.703 1.701 1.699 1.697 1.684 1.676 1.671 1.667 1.664 1.662 1.660 1.659 1.658 1.657 1.656 1.655 1.654 1.654 1.653 1.653 1.653 1.645 t.975 12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110 2.101 2.093 2.086 2.080 2.074 2.069 2.064 2.060 2.056 2.052 2.048 2.045 2.042 2.021 2.009 2.000 1.994 1.990 1.987 1.984 1.982 1.980 1.978 1.977 1.976 1.975 1.974 1.973 1.973 1.972 1.960 .295 3.841 5.991 7.815 9.488 11.070 12.592 14.067 15.507 16.919 18.307 19.675 21.026 22.362 23.685 24.996 26.296 27.587 28.869 30.144 31.410 32.671 33.924 35.172 36.415 37.652 38.885 40.113 41.337 42.557 43.773 55.758 67.505 79.082 90.531 101.879 113.145 124.342 135.480 146.567 157.610 168.613 179.581 190.516 201.423 212.304 223.160 233.994 --- F.95,1 161.448 18.513 10.128 7.709 6.608 5.987 5.591 5.318 5.117 4.965 4.844 4.747 4.667 4.600 4.543 4.494 4.451 4.414 4.381 4.351 4.325 4.301 4.279 4.260 4.242 4.225 4.210 4.196 4.183 4.171 4.085 4.034 4.001 3.978 3.960 3.947 3.936 3.927 3.920 3.914 3.909 3.904 3.900 3.897 3.894 3.891 3.888 3.841 F.95,2 F.95,3 199.500 19.000 9.552 6.944 5.786 5.143 4.737 4.459 4.256 4.103 3.982 3.885 3.806 3.739 3.682 3.634 3.592 3.555 3.522 3.493 3.467 3.443 3.422 3.403 3.385 3.369 3.354 3.340 3.328 3.316 3.232 3.183 3.150 3.128 3.111 3.098 3.087 3.079 3.072 3.066 3.061 3.056 3.053 3.049 3.046 3.043 3.041 2.995 215.707 19.164 9.277 6.591 5.409 4.757 4.347 4.066 3.863 3.708 3.587 3.490 3.411 3.344 3.287 3.239 3.197 3.160 3.127 3.098 3.072 3.049 3.028 3.009 2.991 2.975 2.960 2.947 2.934 2.922 2.839 2.790 2.758 2.736 2.719 2.706 2.696 2.687 2.680 2.674 2.669 2.665 2.661 2.658 2.655 2.652 2.650 2.605 F.95,4 224.583 19.247 9.117 6.388 5.192 4.534 4.120 3.838 3.633 3.478 3.357 3.259 3.179 3.112 3.056 3.007 2.965 2.928 2.895 2.866 2.840 2.817 2.796 2.776 2.759 2.743 2.728 2.714 2.701 2.690 2.606 2.557 2.525 2.503 2.486 2.473 2.463 2.454 2.447 2.441 2.436 2.432 2.428 2.425 2.422 2.419 2.417 2.372 F.95,5 230.162 19.296 9.013 6.256 5.050 4.387 3.972 3.687 3.482 3.326 3.204 3.106 3.025 2.958 2.901 2.852 2.810 2.773 2.740 2.711 2.685 2.661 2.640 2.621 2.603 2.587 2.572 2.558 2.545 2.534 2.449 2.400 2.368 2.346 2.329 2.316 2.305 2.297 2.290 2.284 2.279 2.274 2.271 2.267 2.264 2.262 2.259 2.214 F.95,6 233.986 19.330 8.941 6.163 4.950 4.284 3.866 3.581 3.374 3.217 3.095 2.996 2.915 2.848 2.790 2.741 2.699 2.661 2.628 2.599 2.573 2.549 2.528 2.508 2.490 2.474 2.459 2.445 2.432 2.421 2.336 2.286 2.254 2.231 2.214 2.201 2.191 2.182 2.175 2.169 2.164 2.160 2.156 2.152 2.149 2.147 2.144 2.099 F.95,7 F.95,8 236.768 19.353 8.887 6.094 4.876 4.207 3.787 3.500 3.293 3.135 3.012 2.913 2.832 2.764 2.707 2.657 2.614 2.577 2.544 2.514 2.488 2.464 2.442 2.423 2.405 2.388 2.373 2.359 2.346 2.334 2.249 2.199 2.167 2.143 2.126 2.113 2.103 2.094 2.087 2.081 2.076 2.071 2.067 2.064 2.061 2.058 2.056 2.010 238.883 19.371 8.845 6.041 4.818 4.147 3.726 3.438 3.230 3.072 2.948 2.849 2.767 2.699 2.641 2.591 2.548 2.510 2.477 2.447 2.420 2.397 2.375 2.355 2.337 2.321 2.305 2.291 2.278 2.266 2.180 2.130 2.097 2.074 2.056 2.043 2.032 2.024 2.016 2.010 2.005 2.001 1.997 1.993 1.990 1.987 1.985 1.938 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
© Copyright 2025 ExpyDoc