ADVANCED,AND TUNABLE CARBON NANOMATERIALS ELECTRICAL ELECTROCHEMIAL ENERGY STORAGE FOR HYDROGEN STORAGE Jun.-Prof. Dr. Volker Presser Energy Materials Group, INM – Leibniz Institute for New Materials Dr. Volker Presser Department of Materials ScienceGroup and Engineering, Saarland University, Saarbrücken, Germany Head of Energy Materials · INM – Leibniz-Institute for New Materials energy shortage environmental impact foreign oil Fukushima / Chernobyla gas prizes … and most importantly: why is my cell phone battery empty all the time?! -1- End user Power grid Power plants Central problem: energy storage 2 www.inm-gmbh.de GRID SCALE ENERGY MANAGEMENT EES AND GRID Generation EES η ≈ 70% EES η ≈ 90% EES Transmission & distribution EES Peak shaving Integration of renewable energy Industry 3 Frequency stabilization Consumer www.inm-gmbh.de Regulation (storage) η ≈ 92% (grid average) η ≈ 60% η ≈ 15% Load levelling EES TECHNOLOGIES OVERVIEW Power Density (W/kg) 106 105 104 103 capacitors 107 supercapacitors 102 batteries 101 100 10-2 10-1 100 101 102 fuel cells 103 Energy Density (Wh/kg) 4 www.inm-gmbh.de EES TECHNOLOGIES HISTORY Bagdad Battery (2000 ago) Leyden Jar (250 ago) 5 www.inm-gmbh.de EES TECHNOLOGIES TECHNOLOGIES Chemical Energy Storage Redox reactions Ion insertion Redox battery Intercalation battery Physical Energy Storage 6 Gravity Kinetic energy Electric Field Magnetic field Mechanical Pumped hydro Flywheel Capacitor SMES CAES After Miller, Electrochemical Tutorial, 2012 www.inm-gmbh.de EES TECHNOLOGIES ENERGY DENSITY 70 kJ of energy = 2 t car travelling at 30 km/h 8 = 22 kF supercapacitor (4.6 kg) Specific Energy (MJ/kg) = 1 tea spoon of sugar (4 g) = 1 D-cell battery (140 g) “fuel“ 10 6 10 4 10 “storage“ 2 10 0 10 -2 10 -4 10 7 U235 Diesel Li-Ion Bat. Supercap. www.inm-gmbh.de EES TECHNOLOGIES COMPARISON: BATTERIES VS. SUPERCAPACITORS Supercapacitors Batteries Carbon electrodes coated onto Al foil Separator Electrolyte: from salt water to ionic liquid 8 Electrosorption of ions Chemical reactions / ion insertion Low energy density High energy density High power density Low power density Very long lifetime Limited cycle lifetime www.inm-gmbh.de SUPERCAPACITORS SCIENCE AND TECHNOLOGY RP,1 RP,2 RS C1 (EDL) C2 (EDL) 9 Scherson, D. A.; Palencsár, A., The Electrochemical Society Interface 2006, Spring, 17 - 22. 4V 2 P R 1 E CV 2 2 www.inm-gmbh.de SUPERCAPACITORS CURRENT APPLICATIONS Reliable and highly efficient energy storage Fast recharge & power boost applications 30 s for charging 14 mph (27 max) 10 www.inm-gmbh.de SUPERCAPACITORS CARBON NANOMATERIALS Carbon onions Carbide-derived carbons 450 Surface area (m²/g) 400 5 nm TiC-CDC 350 300 250 200 VC-CDC 150 B4CCDC 100 50 0 1 10 Pore size (nm) 400 nm 11 1 nm 200 nm www.inm-gmbh.de SUPERCAPACITORS ELECTROSPUN CARBON FIBERS SEM SEM Cl2 2 µm TEM 2 µm Disordered carbon TEM Cl2 TiC 5 nm 12 Disordered carbon TiC-CDC 5 nm www.inm-gmbh.de PSEUDOCAPACITORS / HYBRID CAPACITORS SCIENCE AND TECHNOLOGY Specific Capacitance (F/g) 1400 1200 RuO2/PAPPA 1000 Ti/RuOx/Co3O4 RuO2(sol-gel) 800 600 400 200 0 13 Great potential for improvements but need for a better understanding of the underlying principles Theoretical value for MnO2 MnO2 RuO2(ED) Ir0.3Mn0.7O RuO2(sol-gel) RuO2/AC RuO2/AC RuO2(ESD) RuO2/CB MPC C60 CAG NRC CNT MPFPT PAn/CNT DAAQ P3MT PEDT AC 2 PFDT PAn NiO/RuO2 NiO PANI/AC RuO2/CNT RuO2/AC RuO2/CXG MnO2 PIThi PPy/AC PEDT/AC Carbons MnO2 MnOx NiO Polymers Basic Energy Sciences Workshop for Electrical Energy Storage. 2007 RuO2/AC RuO2/MPC SnO2 / Fe3O4 Metal Oxides RuO2 www.inm-gmbh.de FLOW CAPACITORS CONCEPTUAL CONSIDERATIONS Design Perspective Scalable system (energy capacity) Decoupled power/energy Decoupled storage / recovery Flow Batteries Performance Perspective High power-density (<6000 W/kg) Highly efficient (>90%) Long cycle lifetime (100k – 1M cycles) Rapid system response Low cost per power unit stored 14 Supercapacitors www.inm-gmbh.de FLOW CAPACITORS TECHNOLOGY & SCIENCE Electrode and electrolyte are considered as one unit forming a capacitive slurry Charge is transferred within an electrochemical cell consisting out of separator, current collector, and flow channel Energy ratings scale with the tank size Power ratings scale with the total number of electrochemical cells System can be based on “green” materials like aqueous electrolytes 15 www.inm-gmbh.de CONTACT INFORMATION PRESSER GROUP @ INM & SAARLAND UNIVERSITY Jun.-Prof. Dr. Volker Presser INM – Leibniz-Institute for New Materials Phone: +49-681-9300-177 Web:: www.presser-group.com E-mail: [email protected] Presser Group (since 2012)
© Copyright 2025 ExpyDoc