Energy Density - Arbeitskammer des Saarlandes

ADVANCED,AND
TUNABLE
CARBON NANOMATERIALS
ELECTRICAL
ELECTROCHEMIAL
ENERGY STORAGE
FOR
HYDROGEN
STORAGE
Jun.-Prof.
Dr. Volker Presser
Energy
Materials
Group, INM – Leibniz Institute for New Materials
Dr.
Volker
Presser
Department
of Materials
ScienceGroup
and Engineering,
Saarland University, Saarbrücken,
Germany
Head of Energy
Materials
· INM – Leibniz-Institute
for New Materials
energy
shortage
environmental
impact
foreign oil
Fukushima /
Chernobyla
gas prizes
… and most importantly: why is my cell phone
battery empty all the time?!
-1-
End user
Power grid
Power plants
Central problem: energy storage
2
www.inm-gmbh.de
GRID SCALE ENERGY MANAGEMENT
EES AND GRID
Generation
EES
η ≈ 70%
EES
η ≈ 90%
EES
Transmission & distribution
EES
Peak shaving
Integration of
renewable energy
Industry
3
Frequency stabilization
Consumer
www.inm-gmbh.de
Regulation (storage)
η ≈ 92%
(grid average)
η ≈ 60%
η ≈ 15%
Load levelling
EES TECHNOLOGIES
OVERVIEW
Power Density (W/kg)
106
105
104
103
capacitors
107
supercapacitors
102
batteries
101
100
10-2
10-1
100
101
102
fuel
cells
103
Energy Density (Wh/kg)
4
www.inm-gmbh.de
EES TECHNOLOGIES
HISTORY
Bagdad
Battery
(2000 ago)
Leyden Jar
(250 ago)
5
www.inm-gmbh.de
EES TECHNOLOGIES
TECHNOLOGIES
Chemical Energy Storage
Redox reactions
Ion insertion
Redox battery
Intercalation battery
Physical Energy Storage
6
Gravity
Kinetic energy
Electric Field
Magnetic field
Mechanical
Pumped hydro
Flywheel
Capacitor
SMES
CAES
After Miller, Electrochemical Tutorial, 2012
www.inm-gmbh.de
EES TECHNOLOGIES
ENERGY DENSITY
70 kJ of energy
= 2 t car travelling at 30 km/h
8
= 22 kF supercapacitor (4.6 kg)
Specific Energy (MJ/kg)
= 1 tea spoon of sugar (4 g)
= 1 D-cell battery (140 g)
“fuel“
10
6
10
4
10
“storage“
2
10
0
10
-2
10
-4
10
7
U235
Diesel
Li-Ion Bat.
Supercap.
www.inm-gmbh.de
EES TECHNOLOGIES
COMPARISON: BATTERIES VS. SUPERCAPACITORS
Supercapacitors
Batteries
Carbon electrodes
coated onto Al foil
Separator
Electrolyte: from salt water to ionic liquid
8
Electrosorption of ions
Chemical reactions / ion insertion
Low energy density
High energy density
High power density
Low power density
Very long lifetime
Limited cycle lifetime
www.inm-gmbh.de
SUPERCAPACITORS
SCIENCE AND TECHNOLOGY
RP,1
RP,2
RS
C1 (EDL)
C2 (EDL)
9 Scherson, D. A.; Palencsár, A., The Electrochemical Society Interface 2006, Spring, 17 - 22.
4V 2
P
R
1
E  CV 2
2
www.inm-gmbh.de
SUPERCAPACITORS
CURRENT APPLICATIONS
Reliable and highly
efficient energy storage
Fast recharge &
power boost applications
30 s for charging
14 mph (27 max)
10
www.inm-gmbh.de
SUPERCAPACITORS
CARBON NANOMATERIALS
Carbon onions
Carbide-derived carbons
450
Surface area (m²/g)
400
5 nm
TiC-CDC
350
300
250
200
VC-CDC
150
B4CCDC
100
50
0
1
10
Pore size (nm)
400 nm
11
1 nm
200 nm
www.inm-gmbh.de
SUPERCAPACITORS
ELECTROSPUN CARBON FIBERS
SEM
SEM
Cl2
2 µm
TEM
2 µm
Disordered
carbon
TEM
Cl2
TiC
5 nm
12
Disordered
carbon
TiC-CDC
5 nm
www.inm-gmbh.de
PSEUDOCAPACITORS / HYBRID CAPACITORS
SCIENCE AND TECHNOLOGY
Specific Capacitance (F/g)
1400
1200
RuO2/PAPPA
1000
Ti/RuOx/Co3O4
RuO2(sol-gel)
800
600
400
200
0
13
Great potential for improvements
but need for a better understanding
of the underlying principles
Theoretical
value for MnO2
MnO2
RuO2(ED)
Ir0.3Mn0.7O
RuO2(sol-gel)
RuO2/AC
RuO2/AC
RuO2(ESD)
RuO2/CB
MPC C60 CAG NRC
CNT
MPFPT
PAn/CNT
DAAQ
P3MT
PEDT
AC
2
PFDT
PAn
NiO/RuO2
NiO
PANI/AC
RuO2/CNT
RuO2/AC
RuO2/CXG
MnO2
PIThi
PPy/AC
PEDT/AC
Carbons
MnO2
MnOx
NiO
Polymers
Basic Energy Sciences Workshop for Electrical Energy Storage. 2007
RuO2/AC
RuO2/MPC
SnO2 / Fe3O4
Metal Oxides
RuO2
www.inm-gmbh.de
FLOW CAPACITORS
CONCEPTUAL CONSIDERATIONS
Design Perspective
Scalable system (energy capacity)
Decoupled power/energy
Decoupled storage / recovery
Flow Batteries
Performance Perspective
High power-density (<6000 W/kg)
Highly efficient (>90%)
Long cycle lifetime (100k – 1M cycles)
Rapid system response
Low cost per power unit stored
14
Supercapacitors
www.inm-gmbh.de
FLOW CAPACITORS
TECHNOLOGY & SCIENCE
Electrode and electrolyte are considered as
one unit forming a capacitive slurry
Charge is transferred within an
electrochemical cell consisting out of
separator, current collector, and flow
channel
Energy ratings scale with the tank size
Power ratings scale with the total number
of electrochemical cells
System can be based on “green” materials
like aqueous electrolytes
15
www.inm-gmbh.de
CONTACT INFORMATION
PRESSER GROUP @ INM & SAARLAND UNIVERSITY
Jun.-Prof. Dr. Volker Presser
INM – Leibniz-Institute for New Materials
Phone: +49-681-9300-177
Web:: www.presser-group.com
E-mail: [email protected]
Presser Group (since 2012)