NANO-MICRO LETTERS Vol. 2, No. 4 256-267 (2010) Optimization of Pulse Laser Annealing to Increase Sharpness of Implanted-junction Rectifier in Semiconductor Heterostructure E. L. Pankratov* It has been recently shown that inhomogeneity of a semiconductor heterostructure leads to increasing of sharpness of diffusion-junction and implanted-junction rectifiers, which are formed in the semiconductor heterostructure. It has been also shown that together with increasing of the sharpness, homogeneity of impurity distribution in doped area increases. The both effect could be increased by formation of an inhomogeneous distribution of temperature (for example, by laser annealing). Some conditions on correlation between inhomogeneities of the semiconductor heterostructure and temperature distribution have been considered. Annealing time has been optimized for pulse laser annealing. Keywords: Pulse laser; Implanted-juction rectifier; Heterostructure Citation: E. L. Pankratov, “Optimization of Pulse Laser Annealing to Increase Sharpness of Implanted-junction Rectifier in Semiconductor Heterostructure”, Nano-Micro Lett. 2, 256-267 (2010). doi:10.3786/nml.v2i4.p256-267 Increasing performance and reliability of microelectronic thickness L-a and known type of conductivity (n or p). The devices and integrated circuits has attracted great interest second layer of the SH is an EL (0d x d a) with diffusion recently. One way to increase performance of semiconductor coefficient D1 and thickness a. Let us consider a dopant, which is devices is decreasing capacitance of p-n-junctions [1,2]. The implanted across the boundary x=0 into the EL to produce the increase of homogeneity of dopant distribution in doped areas of opposite type of conductivity (p or n). At the time t=0 annealing a semiconductor structure allows to operate with higher current of radiation defects is started with continuance 4. The annealing densities and to decrease local overheats or to decrease depth of of radiation defects after production of the implanted-junction p-n-junction [1-3]. Another actual problem is the increase of rectifier leads to a decrease of quantity of the defects and an exactness of theoretical description of dynamics of technological increase of depth of the p-n-junction. The increasing is unwanted, process. The increase leads to higher predictability of dopant because the process leads to deviation of characteristics dynamics and, as following, higher reproducibility of parameters implanted-junction rectifier from scheduled values. It has been of solid state electronic devices. recently shown, that inhomogeneity of a SH leads to increasing Different types of technological processes could be used for of sharpness of diffusion-junction (see, for example, [6,7]) and production p-n-junctions (see, for example, [1-5]). One of them implanted-junction (see, for example, [8]) rectifiers, which are is dopant diffusion into a semiconductor sample or in an epitaxial formed in the SH. It has been also shown, that together with layer (EL). Another one is ion implantation in the same cases. In increasing of the sharpness homogeneity of dopant distribution this paper we consider a semiconductor heterostructure (SH), in doped area increases. To increase the both effects heating of which is presented in Fig. 1. The SH consists of two layers. First surface region (the thickness of the heated surface region is of them is a substrate (ad x d L) with diffusion coefficient D2, approximately equal to the thickness EL) of the SH attracting an Nizhny Novgorod State University of Architecture and Civil Engineering,65 Il'insky street, Nizhny Novgorod, 603950, Russia *Corresponding author. E-mail: [email protected] E. L. Pankratov Nano-Micro Lett. 2, 256-267 (2010) 257 interest. One way to produce the inhomogeneous distribution of Here V(x,t) and V* are spatiotemporal and equilibrium temperature is pulse laser annealing. Another advantage of this distributions of concentrations of vacancies. P(x,T) is the limit of type of annealing is local heating of the surface of the SH. The solubility of dopant in SH. The fitting parameters ], [ and J advantage is useful for production of elements of integrated depend on properties of layers of SH. Parameter ] characterizes circuits with decreasing spread of dopant across the interface of degree of radiation damage of SH. Parameter [ characterizes the SH. Some theoretical analysis of spatiotemporal distribution doping degree of SH. Parameter J usually is equal to an integer of temperature during laser annealing has been done in previous value in the interval J [1,3] (see [2]). In the following let us works. However, the analysis has been done in simplified consider the limiting case, when the number of different limiting cases. complexes (for example, complexes of defects) is negligible in The main aim of the present paper is to determine the comparison with the number of point defects. Spatiotemporal conditions, which correspond to increasing of recently detected distribution of vacancies concentration is described by the effect, i.e. to increase of the sharpness of the p-n-junction and the following system of equation [3] homogeneity of impurity concentration in doped areas at the same time. The accompanying aim is to develop mathematical approaches for analysis of dopant redistribution during annealing by laser pulses. Method of Solution Spatiotemporal distribution of dopant concentration in the considered SH (see Fig. 1) has been described by the second Fick's law [1-3,5] w C x, t w ª w C x, t º w t w x¬ w x « D x, T , V , C x, t w J C C x, t » ¼ , (1) w t where C(x,t) is the spatiotemporal distribution of dopant concentration. JC(x,t) is the spatiotemporal distribution of dopant flow. D(x,T,V,C(x,t)) is the diffusion coefficient of dopant in the SH. The diffusion coefficient depends on dynamical properties of dopant in materials of the SH, on temperature T of annealing and on concentrations of radiation defects and dopant. It has been shown in Ref. [2] that in high-doped materials interaction between dopant atoms and point defects increases. If the point defects have nonzero charge J e with e an elementary charge, then the interaction leads to concentrational dependence of the diffusion coefficient. The concentrational dependence of the diffusion coefficient could be approximated by the following I x, t w t w ª DI x, T w x «¬ D x, T , V , C x, t (2) w I x, t º wx » k I ,V x, T ¼ ª¬ I x, t V x, t I *V * º¼ w J I x, t w t k I ,V x, T * * ¬ª I x, t V x, t I V ¼º V x, t w V x, t º w ª k I ,V x, T DV x, T « w t w x¬ w x »¼ (3) ª¬ I x, t V x, t I *V * º¼ w J V x, t w t k I ,V x, T ª¬ I x, t V x, t I *V * º¼ where I(x,t) and I* are the spatiotemporal and the equilibrium distributions of interstitials, respectively. JI(x,t) and JV(x,t) are spatiotemporal distributions of flows of interstitials and vacancies, respectively. DV(x,T) and DI(x,T) are diffusion coefficients of vacancies and interstitials, respectively. kI,V(x,T) is the parameter of recombination of point defects. Spatiotemporal distribution of temperature could be estimated by using the second Fourier's law c T w T x, t wt w T x, t º ª O x, T p x, t « wx¬ w x »¼ w p x, t function (see, for example, [9,10] and [2]) J V x, t º ª C x, t º . ª DL x, T 1 9 * «¬ »¼ «¬1 [ P J x, T »¼ V w ° ° ° ° ° ° ° °° ® °w ° ° ° ° ° ° ° °¯ w J T x, t , (4) wx where c(T) is heat capacitance. For the most interesting (in our case) interval of values of temperature one can consider approximately constant value of heat capacitance (c(T)|cass). O(x,T) is the heat conduction coefficient. Temperature dependence of the heat conduction coefficient can be DOI:10.3786/nml.v2i4.p256-267 http://www.nmletters.org Nano-Micro Lett. 2, 256-267 (2010) 258 E. L. Pankratov approximated by the following power law: O(x,T)=Oass(x)[1+P Substitution of the average value of the functions U (x,t) (U = F,T; (Td/T(x,t))M] (see appropriate figures in [12]), Td is Debye F =I,V,L) and their partial derivatives in the right side of the Eqs. P M parameters. (6) instead of the considered functions gives us possibility to D(x,T)=O(x,T)/c(T) is thermal diffusivity. p(x,t) is the bulk obtained the first-order approximations U1 (x,t) of the functions U density of heat power, which is allocated in MS. The power (x,t). To decrease steps of the iterative process, let us consider could be approximated by the function: p(x,t)=P0G(x/ L)sin(S more accurate initial-order approximation (see, for example, [8]). t/4), t[0,4/2], G(x/L) is Dirac G-function, 4 is the continuance As such approximation we consider the solutions of the of the laser pulse, S is the lateral area of SH, and P0 is the power equations of the system (6), which correspond to average values of the laser pulse. JT(x,t) is spatiotemporal distribution of heat of diffusion coefficients D0L, D0I and D0V, thermal diffusivity temperature [12], and are fitting flow. The similar time dependence of power has been considered D0ass and zero parameter of recombination. The solutions can be in [13]. However, the approximation considered in our work written in the form leads to simplification of analysis of mass and heat transport. The Eqs. (1), (3) and (4) are complemented by the following 2 I x, t L boundary and initial conditions in the form (5) where Tr is the equilibrium distribution of temperature, which coincides with room temperature. nI nI n 0 f ¦ F c x e t , L nV JI(0,t)=0, I(L,t)=0, I(x,0)=fI(x); JV(0,t)=0, V(L,t)=0, V(x,0)=fV(x), C(x,0)=fC(x); JT(0,t)=0, T(L,t)=Tr, T(x,0)=fT(x), ¦ F c x e t , 2 V x, t JC(0,t)=0, C(L,t)=0, f nV n 0 2 C x, t L (7) f ¦ F c x e t , nC nC n 0 2 f T x, t Tr ¦ FnT t cnT x enT t , Ln1 First of all let us estimate spatiotemporal distribution of temperature. The parabolic equation has been transformed as where Dass(x)=O ass(x)/cass(x). v, t w T u , t T x, t T ³ ³ wt d ud v PT D v T v, t 1 ³ ³ p u, t d u d v PT c D v T x, t T P M 1 T x 1 T M v d L x M ³ f v c v d v, F FnT t 0 ass L FnF n 0 M r where v t L 0 0 ³ enT W ³ cn v p v, W Cass d vdW, M d ass L cn(x)=cos[S (n+0.5)x/L], enT(t) =exp[-S 2(n+0.5)2D0asst/L2], 0 ass M 1 M 1 r enF(t)=exp[-S 2(n+0.5)2D0Ft/L2]. M d I x, t x 1 v ³ D v, T ³ k I ,V u , T I u , t V u , t d u d v x v L I 1 0 ³ D v, T ³ L us possibility to obtain the first-order approximations (in the dudv modified method of averaging of function corrections) of the appropriate functions. The algorithm is presented in details in [8] ³ D v, T ³ k u , T I u , t V u , t d u d v I ,V L 0 V 1 v ³ D v, T ³ L w V u, t wt 0 V x V ³ D v, T ªV ¬ L * P³ L C P J J v V v , t º¼ v, t w C v, t dv v, T w v ³ 0 w C u, t wt substitute the sums D2U+U1 (x,t) instead of the functions U (x,t) in dudv the right side of the equations of the system (6). The substitution gives us possibility to obtained the second-order approximation (6) functional corrections (see, for example, [14]. DOI:10.3786/nml.v2i4.p256-267 approximations of the functions U (x,t), by using the method of standard procedure (see, for example, [8]), i.e. one shall Let us determine the solution of the system Eqs. (6) by averaging and will not be considered in this paper. The second-order averaging of function corrections can be determined by using the dudv * L x equations of the system (6) instead of the functions U (x,t) gives v 1 x C x, t wt 0 I x V x, t w I u, t Substitution of the Eqs. (7) into the right side of the of the functions U2 (x,t). The algorithm is presented in details in [8,14] and will not be considered in this paper. The parameter D2U is determined by the following relation [8,14], http://www.nmletters.org E. L. Pankratov 259 M ij U M i 1 j U D2U L4 , Nano-Micro Lett. 2, 256-267 (2010) (8) where 4 L M ij U ³ ³ U x, t d x d t . j i 0 0 Furthemore let us analyze the dynamics of redistribution of FIG. 2. Calculated distribution of dopant after annealing with continuance 4 = dopant in the considered MS (see Fig. 1). The obtained analytical 0.0025D0L/L2 (curves 1 and 3) and 4 = 0.005D0L/L2 (curves 2 and 4). Curves 1 relations give us possibility to analyze the redistribution during and 2 are corresponding to spatial of distribution of dopant in homogeneous annealing numerical material. Curves 3 and 4 are correspond to spatial distribution of dopant in SH approaches of the Eqs. (1), (3) and (4) leads to increase the for D1L/D2L=4. Solid lines are analytical results. Dashed lines are numerical exactness of the spatiotemporal distribution of dopant results. Coordinate of interface is equal to a=L/2. of dopant demonstratively. Using concentration. in EL. The effects increase at the same time with the increase of differences between properties of layers of SH. The increase of Discussion sharpness gives us possibility to decrease transit time of charge Let us analyze the dynamics of redistribution of dopant in carriers through the p-n-junction. The increase of homogeneity the SH (Fig. 1) for step-wise approximations of spatial of dopant distribution leads to a decrease of local overheats in distribution of diffusion coefficients of radiations defects and doped area. Dopant distributions on the figure are qualitatively dopant and thermal diffusivity. In the case the approximations similar with analogous distributions in Fig. 3 in reference [8]. can be written as Dass(x)=Dass1[1(x)-1(x-a)]+Dass2 1(x-a) and But spreading of the distributions in the present paper is higher, DF,L(x)=DF,L1[1(x)-1(x-a)]+DF,L21(x-a), where 1(x) is the unit because diffusion coefficient of dopant in EL is larger in function; DF,L1, DF,L2, Dass1 and Dass2 are diffusion coefficient and comparison with the same diffusion coefficient in [8] due to in thermal diffusivity of the EL and substrate, respectively. Spatial homogeneity of distribution of temperature. Figure 2 in the distributions of dopant concentration for some values of present paper shows that inhomogeneity of the SH leads to annealing time and the difference between diffusion coefficients increasing the sharpness of p-n-junction (if the junction was of EL and the substrate are presented in Fig. 2. For simplification formed near the interface) and homogeneity of dopant of analysis we consider the following normalization, distribution in doped area. The calculated spatial distribution of L ³ dopant and experimental one has been compared in Fig. 3. In this C x, t d x 1. 0 situation we obtain satisfactory agreement between calculated and measured results. The satisfactory agreement suggests our Figure 2 shows that semi-insulating property of interface of SH gives us possibility to increase sharpness of p-n-junction and at the same time to increase homogeneity of dopant distribution FIG. 3. Calculated distribution of dopant (solid line). Squares are experimental distribution of boron concentration in silicon (see [15]) for dose F=2u1015 cm-2. FIG. 1. Semiconductor heterostructure, which consist of an epitaxial layer The boron distribution has been annealed by 20 laser pulses with continuance 23 (x[0,a]) and a substrate (x[a,L]). ns, repetition rate 1 hertz and density of power 0.5 J/cm2. DOI:10.3786/nml.v2i4.p256-267 http://www.nmletters.org Nano-Micro Lett. 2, 256-267 (2010) 260 E. L. Pankratov FIG. 4. Distributions of implanted dopant distributions (curves 1-3) for different FIG. 5. Dependences compromise continuance of laser pulses 4 on some values of annealing times. Increasing of number of curves corresponds to parameters of SH. Curve 1 is the dependence of 4 on the ratio D1L/D2L for ] increasing of value of annealing time. Curve 4 is idealised approximation of =0 and a=L/2. Curve 2 is the dependence of 4 on the parameter ] for curves 1-3. D1L/D2L=1 and a=L/2. Curve 3 is the dependency of the 4 on the ration a/L for D1L/D2L=1 and ] =0. Curve 4 is the dependence of 4 on the ratio a/L for accurate choice of model for the present paper. D1L/D2L=1 and ] =0. The increase of annealing time leads to the increase of the homogeneity of dopant distribution and to decrease of the deceleration of dopant diffusion in the substrate is the reason of sharpness of the p-n-junction. Optimization of continuance of the increase of sharpness of the p-n-junction and the increase of laser pulse leads to an increase of the effects at the same time. It homogeneity of dopant distribution in doped area. The obtained should be noted, that two limiting cases of annealing of radiation dependences of optimal annealing times are quantitatively defects could be considered. The first of them is the limiting case differing from analogous dependences of large continuance of laser pulse (spreading of distribution of inhomogeneity of temperature distribution. It should be noted, dopant is larger, than thickness of EL). The second of them is the that annealing by laser pulse with optimal continuance could be limiting case of small continuance of laser pulse (spreading of substituted by some laser pulses with smaller continuance, but distribution of dopant is smaller, than thickness of EL). with high frequency. in [8] due to Optimization of annealing time in the second limiting case is Dependences of optimal annealing time on several necessary, because the increasing of the continuance of laser parameters are presented in Fig. 5. The figure shows that pulse leads to shifting the p-n-junction to the interface of the MS. increasing of the thickness of the EL leads to increasing of the Let us to use the earlier introduced criterion (see, for example, compromise annealing time. Increasing of the ratio D1L/D2L and [6-8] for optimization of annealing time. To use the criterion to the parameter ] leads to decreasing of the annealing time. It optimize the continuance of laser pulse we approximate should be noted, that annealing by laser pulse with optimal spatiotemporal distribution of dopant concentration by step-wise continuance could be substituted by some laser pulses with function (see Fig. 4 and appropriate parts of Refs. [6-8]). To smaller continuance, but with high frequency. It should be noted, estimate the optimal continuance of laser pulse the mean squared that optimal annealing time for the laser annealing case is smaller error between the real spatiotemporal distribution of dopant than optimal annealing time for the volumetric annealing case concentration and step-wise approximation function should be (see Fig. 5). It has been obtained that annealing times for Fig. 2 minimized. Dependences of optimal continuance of laser pulse almost equal to optimal values of annealing times in Fig. 5. The on several parameters are presented in Fig. 5. The figure shows difference could be explained by two reasons. The first of them is that the increase of the thickness of the EL leads to an increase of insufficient continuance of annealing in Fig. 2. The second one is the compromise continuance of laser pulse. The increase of finite exactness of mathematical approach. continuance of laser pulse is obtained due to the increase of continuance of dopant diffusion to interface between layers of SH. The increasing of the ratio D1L/D2L and the parameter ] leads to a decrease of the annealing time. The decrease could be obtained due to the increase of diffusion coefficient of EL, i.e. acceleration of dopant diffusion in the layer. At the same time dopant diffusion coefficient in the substrate decreases. The DOI:10.3786/nml.v2i4.p256-267 Conclusion In this paper we consider pulse laser annealing of radiation defects to increase sharpness of implanted-junction rectifier in semiconductor heterostructure. With the increase of the sharpness, homogeneity of dopant distribution in doped area increases. We optimized continuance of laser pulse to obtain http://www.nmletters.org E. L. Pankratov maximal compromise between the increase of sharpness of the Nano-Micro Lett. 2, 256-267 (2010) 261 6. p-n-junction and the increase of homogeneity of dopant distribution in doped area. The optimal continuance has been 1103/PhysRevB.72.075201 7. analyzed as a function of several parameters of heterostructure. E. L. Pankratov and B. Spagnolo, Eur. Phys. J. B 46, 15 (2005). doi:10.1140/epjb/e2005-00233-1 8. This work has been supported by grant of President of Russia (project № MK-548.2010.2). E. L. Pankratov, Phys. Rev. B 72, 075201 (2005). doi:10. E. L. Pankratov, Phys. Lett. A 372, 1897 (2008). doi:10.1016/j.physleta.2007.10.058 9. E. I. Zorin, P. V. Pavlov and D. I. Tetelbaum, “Ion doping of semiconductors”, Received 11 October 2010; accepted 6 December 2010; published online 12 December 2010. (Energiya, Moscow, 1975, in Russian). 10. H. Ryssel and I. Ruge, Ion implantation, (Teubner, References 1. A. B. Grebene, “Bipolar and MOS analogous integrated circuit design”, (John Wyley and Sons, New York, 1983). 2. Z. Y. Gotra, “Technology of microelectronic devices”, Radio and communication, (Moscow, 1991, in Russian). 3. V. I. Lachin and N. S. Savelov, “Electronics”, (Phoenix, Rostov-na-Donu, 2001, in Russian). 4. S. T. Sisianu, T. S. Sisianu and S. K. Railean, Semicond. 36, 581 (2002). doi:10.1134/1.1478552 5. Stuttgart, Germany, 1978). 11. P. M. Fahey, P. B. Griffin and J. D. Plummer, Rev. Mod. Phys. 61, 289 (1989). doi:10.1103/RevModPhys.61.289 12. K. V. Shalimova, “Physics of semiconductors”, (Energoatomizdat, Moscow, 1985, in Russian). 13. V. I. Mazhukin, V. V. Nosov and U. Semmler, Mathematical modelling 12, 75 (2000). 14. Y. D. Sokolov, Applied Mechanics 1, 23 (1955) (in Russian). T. Ahlgren, J. Likonen, J. Slotte, J. Raisanen, M. Rajatore 15. K. K. Ong, K. L. Pey, P. S. Lee, A. T. S. Wee, X. C. Wang and J. Keinonen, Phys. Rev. B. 56, 4597 (1997). and Y. F. Chong, Appl. Phys. Lett. 89, 172111 (2006). doi:10.1103/PhysRevB.56.4597 doi:10.1063/1.2364834 DOI:10.3786/nml.v2i4.p256-267 http://www.nmletters.org Nano-Micro Lett. 2, 256-267 (2010) 262 E. L. Pankratov Appendix Final analytical formulae describing curves at Fig. (2): Relations for dopant concentration J 1 2 S C2 x , t uP J u J 2 L § S 2 D0 L · ¨ 2 ¸ © L ¹ d u d w sn v d v Dc v, T2 P J f ¦ n 0.5 F e t nC nC n 0 D0 L v, T 2 w V2 u , t d u d w d v 2S V V ¦ n 0.5 F ³ ªV ¬ nC 2 n 0 * L x 2 J 1 S L ¯ J 2 L f L J v uFnC ³ L u * sn w J 1 ª f F c w e t º d w D 2S ¦ nC n 0L nC J 2 »¼ P w, T2 «¬ n 0 L dw dv DC w, T2 P 2 J v, T V sn 0.5 u * v w e t ³ nC nC V sn 0.5 u d u v f w * v ¦ n 0.5 F n 0 * V2 v, t ¼º ½ D0 L 2 ¦ n 0.5 FnC ³ D 2C ¾ * L n0 DC u , T2 ¬ªV V2 u , t ¼º L ¿ 2S J 1 ª f n 2 F c u e t º u nC n nC ³ ³ ªV * V w, t º ³ «¬¦ »¼ L L ¬ 2 ¼0 n0 x v x f L P ³ ®P Dc v, T2 wu J 1 ³³ D 0 L c u, T ª¬V V2 u , t º¼ * 2 sn u 2 u J ª f F c u e t º d u ¦ nC n nC »¼ J P v , T2 «¬ n 0 3 J 1 2 S f D P J ® ¦ n 0.5 enC t u 0L J 4 L n 0 ¯ v f ¦ n 0.5 F ³ w V2 w, t V sn 0.5 w wu ª¬V * V2 w, t º¼ nC n 0 L * 2 u , 2 where D2C is determined by solving the following equation for concrete values of parameter J J 1 2 S D P ® ³ ³ 2C J 2 L4 0 0 ¯ L P D 2C 4 L sn v J f ¦ n 0.5 FnC enC t ³ PJ v, T ª«¬¦ FmC cm v emC t º»¼ d v n 0 m 0 L 2 x f J ½ 2S D0 C 2 ¦ n 0.5 FnC ³ ¾ ® D0 L 2 * L n0 Dc v, T2 ª¬V V2 v, t º¼ ¿ ¯ L L 2S u u w V2 v, t J v, T P x, T J 2 w u FnC ³ L P D0 L 2 S J 4 J 1 FnC P D0 L 3 L 2 S x f sn 0.5 v ¦ n 0.5 F ³ D v, T u nC n 0 L c 2 J f ¦ n n 0.5 enC t ³ ª«¬¦ FmC cm x emC t º»¼ u n 0 m 0 L x f 2 3 4 L J 5 4L sn v xV ³ ³ D x, T ªV 0 0 c 2 ¬ * * x f ³ ¦ n 0.5 e t u V x, t º ¼ 2 nC 0 n 0 J ª f F c x e t º d v d w d x d t 2S D0 L V * 2 f n 0.5 F u ¦ ¦ nC n nC »¼ nC 3 J P v, T2 «¬ n 0 L4 n 0 x v x ³ ³ D x, T ªV 0 0 2 2 4 L u J 1 * sn v d v x d x d t P * V dv * ¬ªV V2 v, t ¼º wt V sn 0.5 v d v x f c 2 ¬ * V2 x, t º¼ DOI:10.3786/nml.v2i4.p256-267 sn 0.5 u d u d v d x d t ³ ³ D u, T ªV 0 L c 2 ¬ * V2 u , t º¼ J 1 P 2 S J 3 4L ¦ n 0.5 F ®³ e t u ¯ 4 f nC n 0 nC 0 http://www.nmletters.org E. L. Pankratov L u³ L x 0 Nano-Micro Lett. 2, 256-267 (2010) 263 J J 4 L ª f F c x e t º sn x d x d t L e t ª f F c x e t º sn v d v d t ½ ; nC n nC nC n nC ³ nC ³ «¬¦ «¬ ¦ »¼ P J x, T »¼ P J v, T ¾¿ n 0 n 0 0 0 2 2 Relations for temperature 4 L x p u, - sn v 2 D ass 0 f D T S n e c u d u d 0.5 >Tr ® ¦ r nT n 2T ³ ³ ³ M ³ M P Td L ¯ P Td L n 0 cass D ass v L 0 0 4 f 2 x 1 T2 x, t L ¦ c v e t ³ e - ³ c u n L nT nT n 0 n 0 4 u ³ enT - ³ cn u 0 cass 0 L u cn u ³ p u, - 0 cass cass 0 p u, - L p u, - º d u d -» ¼ º d u d - Tr » ¼ M 1 M v ³ p u, t cass 0 M x 1 1 º ªT 2 f c v e t u d u d- » d v ¦ n nT r M ³ P Td L D ass v «¬ L n0 ¼ dudv M ½ ° M ¾ P M 1 Td ° ¿ Tr M 1 4 ª2 f c x e t ¦ n nT ³ enT - u M P M 1 Td «¬ L n 0 0 1 2 8M D ass2 0 ³ ®¯S P T M L4 0 d v 4 f L ¦ n 0.5 ³ e - ³ n 0 0 s v ª p u, - 2 f º ucn u d u d - ³ n T cn v enT t ³ enT - ³ cn u d u d- » ¦ r « D ass v ¬ L n0 cass ¼ L 0 0 4 w 4 um L ³ emT - ³ cm u 2 0 p u, - cass 0 u cn u d u d - Tr @ v M ³ p u, t cass 0 u S 2 L ¦ m cm w emT t ³ emT - ³ cm u m 0 0 f 4 L n 0 0 0 0 uS ¦ n 0.5 ³ enT - ³ cn u M u³ 0 p u, t cass M 1 u 1 ½ M ¾ P Td ¿ f ¦ c v e t u m w 1 M p u, - cass p u, - cass ½ d wd v L 2 D ass 0 ®D 2T M u P Td L ¿ D ass v P M 1 Td ¯ d u d- ¾ 1 M 4 L p u, - 2 f ª T c v e t cn u du u ¦ r n nT ³ ³ « D ass v ¬ L n0 cass L 0 0 x d u d -³ sn v x 1 4 L p u,- 2 f ª º dudv T ¦ cn x enT t ³ enT - ³ cn u d u d- » M « r L n0 cass P M 1 Td ¬ ¼ 0 0 1 ª Tr «1 ¬ mT m 0 4 L p u, - 2 f ª º T c v e t e cn u d u d -» u ¦ r n nT nT ³ ³ M ³ « P Td L D ass v ¬ L n0 cass ¼ 0 0 1 uenT - d- @ d v Tr v M 1 u 4 L p u, - ª2 f u c v e t e ¦ n nT nT ³ ³ M ³ « P Td L D ass v ¬ L n 0 cass 0 0 1 4 2 L Td L cass 0 p u,- 2ª 2 f º d u d v «Tr ¦ cn w enT t ³ enT - ³ cn u d u d- » u P¬ L n0 cass ¼ 0 0 4 f M 3 d u d- d v p u, - nT M 1 Tr M 1 M 1 u 4 L p u, - 2 D ass 0 f º x D S n e cn u d ud-u 0.5 ® 2T ¦ nT ³ ³ ³ M » M P M 1 Td ¼ L ¯ P Td L n 0 cass 0 0 Tr DOI:10.3786/nml.v2i4.p256-267 M http://www.nmletters.org Nano-Micro Lett. 2, 256-267 (2010) 264 E. L. Pankratov M sn v ª p u, - 2 f 1 º Tr ¦ cn v enT t ³ enT - ³ cn u d u d- » d v Tr M « D ass v ¬ L n0 cass P Td ¼ L 0 0 4 x u³ 2 L 4 f L L ¦ cn v enT t ³ enT - ³ cn u n 0 0 4 uenT t enT - ³ 0 ³ cass 0 p u, - L p u, - º cn u d u d - » ¼ cass 0 M 1 º d u d -» ¼ M v ³ p u, t cass 0 M ½ ° M ¾ P M 1 Td ° ¿ Tr M 1 v ³ 0 1 ³ D v >T r L ass ªT 2 f c x u ¦n r M P M 1 Td «¬ L n0 1 dudv p u, t w du cass dw 1 , D ass w P Td M where D2T is determined by solving the following equation for concrete values of parameter M ª D 2T Tr «1 ¬ 4 L 4 L p u, - 2 D ass 0 f 1 º D S n e cn u d ud-u 0.5 ® 2T ¦ nT ³ ³ ³ ³ M » M M P M 1 Td ¼ P Td L4 0 0 ¯ P Td L n 0 cass 0 0 Tr M M s v ª p u, - 2 f 1 º u³ n T cn v enT t ³ enT - ³ cn u d u d- » d v Tr ¦ r M « D ass v ¬ L n0 cass P Td ¼ L 0 0 4 x 4 L 0 0 p u, - u enT t ³ enT - ³ cn u L u ³ cn u p u, - cass 0 º d u d -» ¼ cass M ³ M M 1 dudv 4 L p u, - 2 f ª u T c x e t e ¦ n nT nT ³ ³ M « r P M 1 Td ¬ L n0 cass 0 0 1 p u, - s v ¦ ³ e - ³ c u c d u d - ³ D v u 3 M D ass2 0 ³ ®4S P T M L4 0 ¯ d x f 4 L x n nT n n 0 0 0 L p u, - 0 u u 2º M 1 L »¼ 2 L ³ L 0 4 L cass 4 f m L mT p u, - mT cass m 0 º cn u d u d- » ¼ ¦ m c v e t ³ e - u 2 m mT 2 D ass 0 ¯ P Td f 0 ass 4 f M d L ¦ m cm v emT t ³ emT - ³ cm u 2 m 0 0 0 4 f ª T c x e t ¦ nT ³ enT - u « r n0 n ¬ 0 p u, - cass ½ ° 1 ° ¿ P L 4Td d u d- ¾ d x d t 4 L x n nT n 0 DOI:10.3786/nml.v2i4.p256-267 mT m 0 p u, - s v ª d u d -³ T n 0.5 ³ e - ³ c u ¦ L c D v «¬ M 0 M 4 f 1 2 m 0 M 1 ass 4 L f p u, - ª T c v e t e cn u dud-u ¦ r n nT nT ³ ³ M ³ « P Td L D ass v ¬ cass n 0 0 0 x 1 p u, - 1 ¦ m c v e t ³ e - ³ c u c d u d- P T u³ ³ ®D 2 T Tr S 0 0 d u d- d v L ass 4 L p u, - 2 f ª º u n 0.5 «Tr ¦ cn v enT t ³ enT - ³ cn u d u d- » L n0 cass ¬ ¼ 0 0 u ³ cm u 1 M cass 0 ª 2 f c v u n ³ D v «¬ L ¦ n 0 L ass x x 4 L 1 1 º ª2 f d u d - Tr » d v ¦ cn v enT t ³ enT - ³ cn u u M ³ P Td L D ass v «¬ L n 0 ¼ 0 0 p u, t v ½ ucn u d u d- @ M ¾ P M 1 Td ¿ Tr M 1 L 0 n 0 r ass L ass 2 M u f ¦ c v e t u L n nT n 0 http://www.nmletters.org E. L. Pankratov 4 p u, - L u ³ enT - ³ cn u 0 u cn v enT t @ M p u, t v ³ cass 0 M ½ u M M ¾ P M 1 Td ¿ Td Tr u p u, - cass M 1 º ³ 4 L p u,- 2 f ª T e dud-u ³ cn u ¦ r nT ³ M ³ « P Td L D ass v ¬ L n0 0 cass 0 x 1 1 M 1 4 L p u,- 2 f ª º dudv T c x e t e cn u d u d- » u ¦ r n nT nT ³ ³ « P M 1 ¬ L n0 cass ¼ 0 0 1 p v, t x M d u d- » d v ¼ cass 0 1 dv cass 0 xd xdt D ass x 4 L 2 D ass 0 f D S T n 0.5 e ® ¦ ³ ³ 2T r P T M L n 0 ³ nT ³ cn u u L4 0 0 ¯ 0 0 d 1 4 L 4 4 L u enT t enT - cn u ³ ³ 0 u p u, - cass 0 2 D ass 0 M P Td L p u, - cass M sn v ª p u, - 2 f 1 º Tr ¦ cn v enT t ³ enT - ³ cn u d u d- » d v M « D ass v ¬ L n0 cass P Td ¼ L 0 0 x d u d -³ L 4 L p u, - 2 f ª º u «Tr ¦ cn v enT t ³ enT - ³ cn u d u d -» L n0 cass ¬ ¼ 0 0 S Nano-Micro Lett. 2, 256-267 (2010) 265 f 4 n 0 0 º d u d- » ¼ L ¦ n 0.5 ³ e - ³ c u nT M 1 n v ³ p u, t dudv cass 0 cass ass 4 L ³ ³ ^D Tr 2T 0 0 4 L sn v ª 2 f T c v e t e ¦ n nT ³ nT r ³ cn u u D ass v «¬ Ln0 0 0 L x d u d -³ M x 4 L p u, - 1 ª 2 f º º d u d- » d v ³ «Tr ¦ cn v enT t ³ enT - ³ cn u d u d -» P L¬ L n0 cass ¼ ¼ 0 0 L 4 p u, - 2 f ª º u M T c x e t e cn u d u d- » ¦ n nT nT ³ ³ M « r Td P M 1 Td ¬ Ln0 cass ¼ 0 0 1 L ªT 2 f c x u ¦ M 1 TdM «¬ r L n 0 n M 1 M 1 1 ³ D v u 1 ½ 1 ° d xdt M ¾ M P P M 1 Td ° P L4 M 1 Td ¿ Tr 1 p u, - 0 M x 1 M 1 M p u, t v ³ dv du D ass v cass 0 u M 1 ½° d xdt ; M ¾ P M 1 Td ° ¿ Tr M 1 Relations for temperature I 2 x, t D0 I 4S D0V 2 4S 4 L 2 x v w n 0 L 0 0 x v w f ³ ³ ³ k y, T ¦ F nI 2 n 0 L 0 0 cn y enI t ¦ m FmV cm y emV t d y u 4 2 L w L 0 0 f f dudv DI y , T2 x ³ L 1 DI v, T2 ³ k I ,V y, T ¦ FnI cn y enI t ¦ FmV cm y emV t d y d w 2D0 I 0 n 0 DOI:10.3786/nml.v2i4.p256-267 m 0 dudv DI w, T2 DI v , T2 dudv DI w, T2 DI v, T2 m 0 3 n 0 wd w wd w 2 u D0 I ¦ n FnI enI t ³ ³ ³ k I ,V y , T2 sn y d y 2 m 0 f x v w f f 2 I ,V 4 L f ³ ³ ³ k I ,V y, T ¦ n FnI cn y enI t ¦ FmV cm y emV t d y v u ³ k I ,V u , T2 ®D 2 I ³ ¯ 0 S 2 L f ¦ nF nI n 0 L u enI t ³ L 4S 5 L 3 u 1 DI w, T u sn w d w ½ ¾u DI w, T2 ¿ http://www.nmletters.org Nano-Micro Lett. 2, 256-267 (2010) 4 ¯ L u ®D 2V 1 ³ D w, T 2 L V w f f S 0 n 0 m 0 L ³ k I ,V y, T ¦ FnI cn y enI t ¦ FmV cm y emV t d y d w 2D0 I 4S D0 I 2 2 x v w f ³ ³ ³ k y, T ¦ n I ,V 4 L 2 n 0 L 0 0 x v w f 2 FnI cn y enI t ¦ FmV cm y emV t d y m 0 f f 2 4 L n 0 L 0 0 3 n 0 2 L L 0 0 w f x dudv DV y , T2 ³ L DI v , T2 f n 0 0 4 ¯ L u u L 1 ³ D w, T 2 u enI t ³ m 0 L V dudv ¯ S 2 L 4S u u n 0 L ¦ nFnI enI t ³ u 5 L DI w, T L f 3 1 ³ k I ,V u , T2 ®D 2 I ³ 0 DI w, T2 DI v , T2 v 1 ³ k I ,V y, T ¦ FnI cn y enI t ¦ FmV cm y emV t d y d w 2D0 I u ®D 2V u dudv DI w, T2 DI v, T2 m 0 x v w f 4 nI n 0 wd w wd w ³ ³ ³ k I ,V y, T2 ¦ FnI cn y enI t ¦ m FmV cm y emV t d y u D0V ¦ n FnV enV t ³ ³ ³ k I ,V y , T2 sn y d y u ¦ nF ¾d u d v , V2 x, t 2 2 f DI w, T2 ¿ L 4S E. L. Pankratov sn w d w ½ u u enI t ³ D0V u 266 u sn w d w ½ ¾u DI w, T2 ¿ w f f S 0 n 0 m 0 L ³ k I ,V y, T ¦ FnI cn y enI t ¦ FmV cm y emV t d y d w 2D0 I 2 f ¦ nF nI u n 0 sn w d w ½ ¾d u d v , DI w, T2 ¿ where D2I and D2V are determined by the following relations D 2V 1ª § « L4 S ¨ 1 2¬ u S I 11 WI M I 11 u 4 © I 01 S I 10 · S S S I 10 SV 01 º ª § S · § S · S I 00 ¨ 1 V 10 ¸ S I 10 SV 11 WV M I 11 ¨ 1 I 10 ¸ S I 01 L u » « L4 ¼ ¬ © L4 ¹ © L4 ¹ 2 SV 00 L4 S S I 00 WV SV 11 M V 11 I 00 SV 11 WV M V 111 V 00 u ¸ L4 ¹ L4 L4 L4 WI M I 11 SV 01 I 11 S I 10 º ª§ ¨1 L4 »¼ «¬© SV 10 · ¸ S I 00 S I 10 SV 00 L4 ¹ 2 º 4 S M > V 11 V 11 ¼» 1 § º ªS §1 º ½2 , WV ¨ 1 W S M S S ¸ ¸ I 10 V 00 » ¾ I I 11 I 11 I 00 ¨ © L4 ¹ L4 ¼» ¬« © L4 ¹ ¼ ¿ S I 01 · D2I SV 10 · SV 01 QI S I 11 M I 111 D 2V S I 10 L4 D 2V S I 00 S I 01 DOI:10.3786/nml.v2i4.p256-267 1 , http://www.nmletters.org E. L. Pankratov Nano-Micro Lett. 2, 256-267 (2010) 267 where 4 L x x ³ ³ D x, T ³ S U ij U 0 0 2 D0 I S 2 f v n 0 L ¦ n FnI enI t ³ 2 L 4 D0 I 4 D0V 2 D0 I WV 4 D0V 2 D0V S S S 2 L ³³ » « v 2 nV n 0 enV t ³ L 2 4 L x u 1 V ¦F mV u f f 0 n 0 m 0 L f n 0 m 0 f ³ ³ ³ ³ k I ,V w, T2 ¦ FnI cn w enI t ¦ m FmV cm w emV t d w n 0 4 L f ¦ n FnI enI t ³ ³ 2 4 L n 0 4 D0 I S 0 0 m 0 x x ³ D x, T S 2 4L x u 4 L v sn v d v DI v, T2 0 I 2 4 L x u L 3 f f n 0 m 0 f f ³ ³ ³ ³ k I ,V w, T2 ¦ FnI cn w enI t ¦ m FmV cm w emV t d w n 0 0 0 0 0 4 L f ¦ n FnV enV t ³ ³ n 0 DOI:10.3786/nml.v2i4.p256-267 0 0 m 0 x 2 4 DI v, T2 DI x, T vdud v xd xdt DI v, T2 DI x, T DV x x, T ³ 0 d xdt , 2 4 vdud v xd xdt 2 ³ ³ ³ ³ k I ,V w, T2 ¦ n FnI cn wenI t ¦ FmV cm wemV t d w 0000 » d wd u d vd xd t , f f DI u , T2 DV u , T2 ¼ ³ ³ ³ ³ k I ,V w, T2 ¦ n FnI cn w enI t ¦ FmV cm w emV t d w 0 0 0 0 d wd u j 2 4 cm w emV t ³ k I ,V w, T2 ¦ FnI cn w enI t ¦ FmV cm w u 2 sn u d u º f m 0 ³ D u, T L v ¦n F ¦ FnI cn w enI t n 0 DI u , T ¼ ¬ L f f L 0 i 0 0 0 0 3 L 2 k I ,V w, T2 2 L S v u sn u d u º ª 4 2 4 L x u 4 S ¬L 0 uemV t d w d u 2 D0V WI ª4 k I ,V v, T2 « v sn v d v DV v, T2 vdud v vd ud v xd xd t DV v, T2 DV x, T xd xdt DV v, T2 DV x, T d xdt. http://www.nmletters.org
© Copyright 2024 ExpyDoc