WaM-DaM: A Data Model to Synthesize and Organize Water

WaM-DaM: A Data Model to
Synthesize and Organize Water
Management Data
Adel M. Abdallah & David E. Rosenberg
2014 AWRA Spring Specialty Conference
GIS & Water Resources VIII - Data to Decisions
May 12-14 Snowbird, UT
1
Water Management Data Model
(WaM-DaM)
1. Why Do We Need a Standard?
2. Design Methods
3. WaM-DaM
A Proposed Method to Organize
Network-Based Water
Schema
Management Data
4. Results
5. Conclusions
WaM-DaM
Model quicker. Publish faster.
2
Why Do We Need a Standard?
• We use different data sources and models to manage
water resources
• Scientists and managers spend up to 75% of their time to
build models
Supply
Demand
3
Different Sources and Descriptions
Lake Mead
e.g., outflow
Hoover Dam
e.g., release
Reservoir? Water body?
HydroDesktop
4
Different Model Needs
Reservoir Simulation (ResSim)
Simulates reservoir operation and management
Requires operational data (e.g., gates and release
rules), river network, diversions, etc.
Water Evaluation and Planning system (WEAP)
Allocates water to meet basin demands
Requires supplies, delivery requirements,
priorities, allocation priorities, etc..
5
Objective
Design a data model/standard to organize,
share, and publish water management data
Integrate data from different sources
Support consistent metadata descriptions
Open-source, generic, programming
language and technology independent
6
Needed features for a standard to organize
network-based water management data
#
Feature
Example data models that
support it fully or partially
1
Generic and open source
information model
Observations Data Model (ODM)
2
Create dynamic networks
from objects and instances
ArcHydro, WEAP, HydroPlatform,
and, HEC-DSS (Data System
Storage)
3
Enforce controlled
vocabulary
Observations Data Model (ODM),
ArcHydro,
4
Impose descriptive and
explicit metadata
Observations Data Model (ODM)
5
Support multiple data
formats (time series,
tabular, text, parameters)
HEC-DSS and HydroPlatform
7
Design Methods
1. Identify the essential data for water management. 84 fields
2. Represent these fields in tables according to Relational Model
Theory and Jim Gray’s rule. 58 tables
Categories of questions
That WaM-DaM will
answer:
i) Build a network
ii) Compare datasets
iii) Query data
(1) Project metadata
Objects and attributes
(4) Data Formats
Text: Release rules
(2) Network metadata
Instances and scenarios
(3) Attribute metadata
Variables, methods, sources,
time, and units,
[Observations Data Model (ODM)]
8
WaM-DaM 0.2 Schema
People
PK PersonID
Samples
PK SampleID
PoliticalJurisdictionalNodeInstace
PK PoliticalJurisdictionNodeInstaceID
Project Metadata
FK1 NodeInstanceID
FK2 PoliticalJurisdictionID
Controlled
Vocabulary
Description
FK1 PersonID
Definition
Definition
NodeObjectCategory
PK NodeObjectCategoryID
NodeObjectNameCV
PK NodeObjectName
Definition
FK2 NodeAttributeCategotyCV
FK1 ParentNodeAttributeCategoryID
FK3 NodeObjectID
FK1 AttributeID
FK2 CategotyID
Attributes
PK AttributeID
FK2 LinkObjectNameCV
Description
Color
Shape
LinkObjectCode
ProjectID
FK1 LinkObjectCategoryID
FK1 AttributeNameCV
Description
AttributeCode
NoDataValue
LinkObjectAttributes
PK LinkObjectAttributeID
LinkObjectNameCV
PK LinkObjectName
Definition
LinkObjectCategory
PK LinkObjectCategoryID
FK2 LinkObjectCategoryCV
FK1 ParentLinkObjectCategoryID
Definition
NodeInstanceName
Description
NodeInstanceCode
ExistingOrProposed
Longitude
Latitude
LocalX
LocalY
FK1 NetworkID
FK3 SpatialReferenceID
FK2 NodeObjectID
FK1 AttributesID
FK3 LinkObjectID
FK2 LinkCategotyID
AttributeNameCV
PK AttributeName
Definition
ObjectName
Networks
PK NetworkID
NetworkName
Description
DateCreated
FK1 ProjectID
LinkInstances
PK LinkInstanceID
LinkInstanceName
LinkInstanceCode
Length_m
Description
ExistingOrProposed
FK3 StartNodeInstanceID
FK4 EndNodeInstanceID
FK2 NetworkID
FK1 LinkObjectID
SourceName
SourceWebpage
Citation
FK2 OrganizationID
FK1 ModelID
FK3 SampleID
ScenarioNodeInstanceAttributeData
PK ScenarioNodeInstanceAttributeDataID
Scenarios
PK ScenarioID
ScenarioName
Abbreviation
TimeHorizon
ReferenceStudyName
FK1 NetworkID
Description
DataTypeCV
PK DataType
FK1 AffiliationID
FK2 SourceID
Methods
PK MethodID
Models
PK ModelID
MethodName
MethodLink
MethodDescription
FK2 OrganizationID
FK3 PersonID
FK1 MethodTypeCV
UnitType
UnitName
UnitAbbreviation
TextValueControlledCV
PK TextValueControlled
Affiliations
PK AffiliationID
AffiliationStartDate
AffiliationEndDate
Phone
Email
FK1 OrganizationID
FK2 PersonID
Webpage
Address
MethodTypeCV
PK MethodType
Definition
SiteLatitude
ODMSiteName
SiteLongitude
IsRegular
TimeSupport
UTCOffset
FK1 TimeUnitID
Definition
TextDescriptorControlledData
PK TextControlledID
AttributeMetaData
PK AttributeMetadataID
FK2 AttributesID
FK1 AttributeFormatCV
FK5 UnitID
FK3 DataTypeCV
FK4 MethodID
Definition
FK2 TextValueControlled
FK1 AttributeMetadataID
CensorCodeCV
PK CensorCode
Definition
Data Values Storage
TimeSeriesData
PK TimeSeriesID
LocalDateTime
DateTimeUTC
Value
FK2 CensorCode
FK3 TimeSereisMetadataID
FK1 AttributeMetadataID
ColumnsData
PK ColumnID
AttributeFormatCV
PK AttributeFormat
FK1 AttributeMetadataID
TextDescriptorFreeData
PK TextFreeID
Definition
ParameterData
PK ParameterID
ScenarioLinkInstanceAttributeData
PK ScenarioLinkInstanceAttributeDataID
FK1 ScenarioID
FK2 LinkInstanceID
FK3 AttributeMetadataID
PersonFirstName
PersonMiddleName
PersonLastName
TimeSeriesMetadata
PK TimeSereisMetadataID
Units
PK UnitID
SourceOriginOrder
FK1 AttributeMetadataID
FK2 SourceID
Definition
FK1 LinkAttributeCategotyCV
ParentLinkAttributeCategoryID
Definition
Attribute
Metadata
AffiliationSources
PK AffiliationSource
ModelName
Citation
ModelMainPurpose
SoftwareUsed
Description
ModelDateCreated
FK3 NodeInstanceID
FK1 ScenarioID
FK2 AttributeMetadataID
Network
Metadata
LinkAttributeCategory
PK LinkCategotyID
LinkAttributeCategoryCV
PK LinkAttributeCategoty
SampleMediumCV
OrganizationTypeCV
PK SampleMedium FK1 OrganizationTypeCV
PK OrganizationTypeCV
OrganizationCode
Definition
OrganizationName
Definition
OrganizationLink
OrganizationDescription
ParentOrganizationID
SourceData
PK SouceDataID
NodeObjectAttributes
PK NodeObjectAttributeID
LinkObjects
PK LinkObjectID
LinkObjectCategoryCV
PK LinkObjectCategory
NodeInstances
PK NodeInstanceID
JurisdictionName
State
County
Country
AgreementName
City
Sources
PK SourceID
NodeObjects
PK NodeObjectID
FK2 NodeObjectNameCV
Description
Color
Shape
NodeObjectCode
FK3 ProjectID
FK1 NodeObjectCategoryID
Projects
PK ProjectID
ProjectName
Description
Purpose
Domain
DateCreated
Status
FK1 UserID
SRSID
IsGeographic
Notes
NodeAttributeCategory
PK NodeAttributeCategotyID
FK2 NodeObjectCategoryCV
FK1 ParentNodeObjectCategoryID
Definition
FK2 SampleTypeCV
LabSampleCode
FK1 SampleMediumCV
PoliticalJurisdictions
PK PoliticalJurisdictionID
NodeAttributeCategoryCV
SpatialReference
NodeObjectCategoryCV PK NodeAttributeCategoty
PK SpatialReferenceID
PK NodeObjectCategory
Users
PK UserID
SampleType
PK SampleType
Organization
PK OrganizationID
DateCollected
Assumptions
ParameterValue
Description
FK1 AttributeMetadataID
BinaryData
PK BinaryID
BinaryValue
ValueMeaning
FK1 AttributeMetadataID
TextValue
Description
FK1 AttributeMetadataID
MultiColumnsData
PK MultiColumnID
FK2 ColumnID
FK1 AttributeMetadataID
FileBasedData
PK FileBasedID
SeasonalParameterData
PK SeasonalParameterID
SeasonName
Value
Description
FK1 AttributeMetadataID
FileName
FileType
Description
FileLocationOnDesk
FileWebpage
FK1 AttributeMetadataID
MultiColumnValues
PK MultiColumnValueID
Value
ValueOrder
FK1 MultiColumnID
9
Load Different Data to WaM-DaM
US Dams dataset
23 attributes
8,121 instances
Time Series data
32 attributes
Water
Management
Data Model
(WaM-DaM)
US Water Bodies and
Wetlands Dataset
15 attributes
26,872 instances
WEAP Model
Lower Bear River, UT
10
53 instances
Represent the Little Bear River
Network, Utah in WaM-DaM
Site
node object
River
link object
Reservoir
node object
Site
node object
11
Results
What are the attributes for Hyrum Reservoir and
their units?
Dam, Reservoir, water body, lake
Object name
Node instance name Attribute format
Attribute name
Unit name
Organize multiple data formats and maintain
consistent metadata
12
Results
What are the reservoir attributes, values, units,
and sources?
MAX_STOR and Total Capacity
Node instance name
Attribute name
Value
Unit name
Source
 Integrate data sources and support explicit descriptive
metadata
 Incorporate uncertainty in models
 Foster integrated understanding of systems data
13
Future Work
• Finalize the data model design and test it with larger
networks and national datasets
• Integrate WaM-DaM with Hydra software to visualize and
edit networks
• Automate data loading, retrieval, and use WaM-DaM to
populate and run models
Online
Published Data
(e.g., Bureau of
Reclamation)
Prior Models
Outputs
(e.g., WEAP,
HEC-ResSim)
Discover
Existing
Data
Files from
Stakeholders
(e.g., cities and
operators)
GAMS
Transform
and Organize
Data and
Introduce
Controlled
Vocabulary
Water
Management
Data Model
(WaM-DaM)
Retrieve and
Transform and
Publish Data
in Desired
Format and
Units
WEAP
CUAHSI
HIS
Other
Models
14
Conclusions
• Propose WaM-DaM as a method to organize networkbased water management data
• Organize multiple data formats like time series, text,
multi-column, and parameters from different sources
• Foster integrated analysis and understandings of water
systems
• Future work will automate the process to discover,
transform, and publish of data plus populate models
15
Acknowledgement
http://ci-water.org/
This project is funded through EPS – 1135482 and EPS –
1135483. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation
16
Thank you!
Questions?
For more info: Adel Abdallah
[email protected]
http://www.engr.usu.edu/cee/faculty/derosenberg/students.htm
WaM-DaM
Model quicker. Publish faster.
17