Outline Introduction 5-Dimensional Theories Summary Pre-Workshop on Gravitation and Cosmology Teleparallel Gravity in Five Dimensional Theories Reference: arXiv:1403.3161 [gr-qc] Ling-Wei Luo Department of Physics, National Tsing Hua University (NTHU ) Collobrators: Chao-Qiang Geng (NCTS /NTHU ), Huan Hsin Tseng (NTHU ) April 11, 2014 @ NTHU Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 0/ 15 Outline Introduction 5-Dimensional Theories Summary Outline 1 Introduction 2 5-Dimensional Theories 3 Summary Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 1/ 15 Outline Introduction 5-Dimensional Theories Summary Outline 1 Introduction 2 5-Dimensional Theories 3 Summary Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 1/ 15 Outline Introduction 5-Dimensional Theories Summary Brief History of 5-Dimension Theories KK theory: in order to unify electromagnetism and gravity by gauge theory Cylindrical condition (Kaluza 1921) ⇒ KK 0-mode Compactification to small scale (Klein 1926) As a KK generalization ⇒ induced matter theory (matter come from the 5th-dimension) (Wesson 1998) Large Extra dimension (ADD model) (Arkani-Hamed, Dimopoulos and Dvali 1998) Solving hierarchy problem SM particle confined on the 3-brane Randall-Sundrum model in AdS5 spacetime (Randall and Sundrum 1999) RS-I ( UV-brane and SM particle confined on IR-brane) ⇒ solving hierarchy problem RS-II (only one brane) ⇒ compactification to generate 4-dimensional gravity Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 2/ 15 Outline Introduction 5-Dimensional Theories Summary DGP model (Dvali, Gabadadze and Porrati 2000) ⇒ accelerating universe Universal Extra dimension (Appelquist, Cheng and Dobrescu 2001) Not only graviton but SM particle can propagate to extra dimension ⇒ low compactification scale: reach to electroweak scale Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 3/ 15 Outline Introduction 5-Dimensional Theories Summary Teleparallelism Introduce the orthonormal frame (veirbein) in Weitzenb¨ock geometry W4 gµν = ηij eiµ ejν , ηij = diag(+1, −1, −1, −1) where µ, ν, ρ, . . . = 0, 1, 2, 3 and i, j, k, . . . = ˆ 0, ˆ 1, ˆ2, ˆ3. Metric compatible condition ∇ gµν = 0: ∇ eiν = 0 , Absolute parallelism ωij = − ωji , (Teleparallelism, Einstein 1928) for parallel vector ∇ν eiµ = ∂ν eiµ − eiρ Γρµν = 0 Weitzenb¨ ock connection ⇒ Γρµν = eρi ∂ν eiµ (ωijµ = 0) Curvature-free Rσ ρµν (Γ) = eσi ejρ Ri jµν (ω) = 0 ´ Cartan 1922) Torsion tensor (Elie T i µν ≡ ∂µ eiν − ∂ν eiµ Contorsion tensor is defined as 1 K ρ µν = − (T ρ µν − Tµ ρ ν − Tν ρ µ ) 2 Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 4/ 15 Outline Introduction 5-Dimensional Theories Summary The connection can be decomposed as ρ Γρµν = {µν } + K ρ µν , ρ where {µν }(e) is Levi-Civita connection In W4 , Teleparallel Equivalent to GR (GRk or TEGR) based on the the relation ˜ µT µ. −R(e) = T − 2 ∇ The telaparallel Lagrangian is Stele 1 = 2κ Z d4 x e T Torsion Scalar T = 1 ρ 1 1 T µν Tρ µν + T ρ µν T νµ ρ − T ν µν T σµ σ ≡ T i µν Si µν 4 2 2 Sρ µν ≡ K µν ρ + δρµ T σν σ − δρν T σµ σ = −Sρ νµ is superpotential Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 5/ 15 Outline Introduction 5-Dimensional Theories Summary Outline 1 Introduction 2 5-Dimensional Theories 3 Summary Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 5/ 15 Outline Introduction 5-Dimensional Theories Summary Hypersurface of GR The 5D metric can be decomposed as ds2 = g¯M N dxM dxN = (¯ gµν + Aµ Aν ) dxµ dxν + 2 φAµ dxµ dx5 + ε φ2 dx5 dx5 where y = x5 with M, N = 0, 1, 2, 3, 5 and choose ε = −1. Unit normal vector n and g¯55 = n · n The tensor BM N = −∇M nN , hM N = g¯M N − ε nM nN θ = hM N BM N , 1 σM N = B(M N ) − θhM N , 3 ωM N = B[M N ] Gauss’s equation ¯ µ νρσ = Rµ νρσ + ε(K µ σ Kνρ − K µ ρ Kνσ ) R 5 Intrinsic curvature Kµν = −ε∇µ n · eν = −ε 12 Ln gµν = {µν } Later, we assume Aµ = 0 Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 6/ 15 Outline Introduction 5-Dimensional Theories Summary 5-Dimension Setting In normal coordinate, 5D metric is g¯M N = η¯IJ eIM eJN , η¯IJ = diag(+1, −1, −1, −1, ε) with ε = ±1, M, N, O = 0, 1, 2, 3, 5 and I, J, K = ˆ 0, ˆ 1, ˆ 2, ˆ 3, ˆ 5. The 5D torsion scalar can be decomposed as (5) 1 T = |{z} T¯ + T¯ρ5ν T¯ρ5ν + T¯ρ5ν T¯ν5ρ +2 T¯σ σ µ T¯5 µ5 −T¯ν 5ν T¯σ5 σ , 2 induced torsion scalar ¯ ˆ5 µν C Induced torsion T¯ρ µν = T ρ µν + C¯ ρ µν with C¯ ρ µν related to the extrinsic torsion or twist ωM N z }| { ˆ ˆ = eρˆ5 (∂µ e5ν − ∂ν e5µ ) ˆ ˆ ˆ N ˆ 5 C¯ 5 µν = Γ5νµ − Γ5µν = hM µ hν T M N ∼ ωM N Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 7/ 15 Outline Introduction 5-Dimensional Theories Summary Braneworld Theory Metric is given by g¯M N = gµν (xµ , y) 0 , 0 εφ2 (xµ , y) The tensor C¯ ρ µν = 0 ⇒ induced torsion scalar T¯ = T The Lagrangian Sbulk = 1 2κ5 Z 1 dvol5 T + (Tij5 T ij5 + Ti5j T j5i ) 2 2 + ei (φ) T a − T5 T 5 , φ where TA := T b bA Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 8/ 15 Outline Introduction 5-Dimensional Theories Summary The bulk metric g¯ is maximally symmetric 3-space with spatially flat (k = 0) and has the form g¯M N = diag −1, a2 (t, y), a2 (t, y), a2 (t, y), ε φ2 (t, y) (1) ˆ ˆ ˆ ϑ¯0 = dt, ϑ¯i = a(t, y) dxi , ϑ¯5 = φ(t, y) dy. Torsion 2-forms are ˆ ˆ T¯0 = d¯ϑ¯0 = 0, a˙ ˆ ˆ a0 ¯5 ¯ˆi ˆ ˆ ϑ ∧ϑ , T¯i = d¯ϑ¯i = ϑ¯0 ∧ϑ¯i + a aφ Torsion 5-form reads " ¯ T = T+ 3 − 9 ε a02 a˙ φ˙ +6 2 2 φ a a φ φ˙ ˆ ˆ ˆ T¯5 = ϑ¯0 ∧ϑ¯5 , φ (2) !# dvol5 The equations of motion ¯A H ¯A E ¯A Σ Ling-Wei Luo 1 = (−2)¯ ? T¯A − 2 (2) T¯A − (3) T¯A 2 B ¯ ¯ ¯ := ie¯A (T ) + ie¯A (T ) ∧ HB , ¯ mat δL := , δ ϑ¯A (1) Pre-Workshop on Gravitation and Cosmology @ NTHU , 9/ 15 Outline Introduction 5-Dimensional Theories Summary The equation of motion of the bulk: ! " 00 02 # 2 0 0 ˙ a ˙ φ ε a a φ 1 + ε a a ˙ ¯H ¯ˆ − E ¯ˆ = 3 ¯?ϑ¯ˆ0 + − 2 − − D 0 0 a2 aφ φ a a φ 2φ2 a2 ! a0 φ˙ 3ε a˙ 0 ¯ˆ ¯ − ?ϑ¯5ˆ = −κ5 Σ + 0 φ a aφ ! 0 ˙ 0 a φ a ˙ 1 + ε a02 ¯ 3 a ¨ 2a˙ 2 ¯ˆ + 3 ¯H ¯ˆ − E ¯ˆ = ¯ ¯?ϑˆ5 D − ? ϑ + − 5 5 0 φ aφ a a a2 2φ2 a2 ¯ˆ . = − κ5 Σ 5 ¯ ¯ A = T¯B ¯ The energy-momentum tensor is Σ A ? ϑB , we have the Friedmann equation ! a˙ 2 a˙ φ˙ 1 a00 a0 φ0 1 a02 κ5 ¯ − T00 + − − = a2 aφ φ2 a a φ φ2 a2 3 The same as GR! See (Binetruy, Deffayet and Langlois 2000) But the junction condition come from torsion itself! Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 10/ 15 Outline Introduction 5-Dimensional Theories Summary KK Theory Focus on low-energy effective gravitational theory ⇒ consider original KK theory Cylindrical condition (no dependency x5 ) Compactify to S 1 and only consider zero KK mode The metric reduce to g¯M N 0 gµν (xµ ) = , 0 −φ2 (xµ ) The residual components are T ρ µν , and T¯5 µ5 = ∂µ φ/φ The torsion scalar is (5) T = T + 2 T σ σ µ T¯5 µ5 The effective Lagrangian is Seff = Ling-Wei Luo 1 2 κ4 Z d4 x e (φ T + 2 T µ ∂µ φ) Pre-Workshop on Gravitation and Cosmology @ NTHU 11/ 15 Outline Introduction 5-Dimensional Theories Summary Compare to GR The effective Lagrangian of GR p −(5) g (5) R → √ −g φR A specific case of Brans-Dicke theory (Brans-Dicke parameter ω = 0) The effective Lagrangian of TEGR (5) (5) µ e T → e φ T + 2 T ∂µ φ ˜ µT µ Curvature-torsion −R(e) = T − 2∇ Z −1 ˜ µ (φ T µ ) ⇒ d4 x e φR(e) − 2 ∇ 2κ4 Equivalent to φR up to the total derivative term Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 12/ 15 Outline Introduction 5-Dimensional Theories Summary Conformal Transformation By conformal transformation T Tµ Ω2 T˜ − 4 Ω g˜µν T˜µ ∂ν Ω − 6 g˜µν ∂µ Ω ∂ν Ω = T˜µ − 2 Ω−1 ∂µ Ω . = Choosing φ = Ω2 , the action reads Z 1 ˜ 4 µν Seff = d x e˜ T − 14 g˜ ∂µ ψ ∂ν ψ , 2 κ4 √ where ψ = (1/ 2 κ4 ) ln Ω. There exist an Einstein frame for such non-minimal coupled effective Lagrangian in teleparallel gravity. Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 13/ 15 Outline Introduction 5-Dimensional Theories Summary Outline 1 Introduction 2 5-Dimensional Theories 3 Summary Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 13/ 15 Outline Introduction 5-Dimensional Theories Summary Summary In GR, the extrinsic curvature plays an important role to give the projected effect in the lower dimension The effect on the lower dimensional manifold is totally determined by a higher dimensional geometry for TEGR as our setting braneworld theory of teleparallel gravity in the FLRW cosmology still provides an equivalent viewpoint as Einstein’s general relativity. The KK reduction of telaparallel gravity generate non-Brans-Dicke type effective Lagrangian The additional coupled term lead to an Einstein frame by conformal transformation for the non-minimal coupled teleparallel gravity Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 14/ 15 Outline Introduction 5-Dimensional Theories Summary End Tank You for Listening!!! Ling-Wei Luo Pre-Workshop on Gravitation and Cosmology @ NTHU 15/ 15
© Copyright 2025 ExpyDoc