Introduction State of the Art Methodology Results Conclusion DCF modeling and optimization of long-distance IEEE802.11n point-to-point links Michael Rademacher [email protected] 19. ITG Fachtagung Mobilkommunikation Osnabr¨ uck. May 21, 2014 Hochschule Bonn-Rhein-Sieg Introduction State of the Art Methodology Results Conclusion Introduction WiFi based Long Distance networks (WiLD) Are used to overcome the digital divide in rural areas Off-the-shelf IEEE802.11 hardware operating in the ISM-Band Wireless Mesh Network (WMN), WiBACK Our previous work on WiLDs Make 802.11a suitable for long distance point-to-point links Maximize the throughput by exploiting 802.11n A lot of measurements on different links (distances) Uni-directional traffic, maximum modulation (and frame-aggregation) e.g. 200 Mbps: 802.11n, 10 km, 40 MHz, 2x2 MIMO, MCS 15 M. Rademacher 2 Introduction State of the Art Methodology Results Conclusion Motivation 1 2 The 802.11 point-to-point performance depends on: Environment Traffic MAC parameter Distance Protocol (e.g IP/UDP) Slot time (σ) MCS Payload size Contention Window (CW) BER Frame aggregation Max. retransmission (R) The MAC was designed by the IEEE compromising: ) Numerous stations in a cell (AP) Spatial restrictions of a few hundred meters Optimization potential! Mathematical modeling instead of countless measurements M. Rademacher 3 Introduction State of the Art Methodology Results Conclusion Background: Distributed Coordination Function (DCF) 0<CW<31 Back-off freeze: CW=12 0<CW<31 PPDU CW=6 CW=18 slot 0<CW<31 ACK CW=12 Back-off freeze: CW=6 CW SIFS PPDU CW= 6 DIFS 0<CW<31 0<CW<31 ACK Timeout CW=22 PPDU CW=6 slot 0<CW<31 Propagation time ACK CW=9 CW M. Rademacher Back-off freeze: CW=3 SIFS CW= 3 DIFS 4 Introduction State of the Art Methodology Results Conclusion State of the Art 802.11 MAC layer modeling has been well researched Mainly based on two publication by Bianchi or Cali et. al Numerous extensions have been published Only a few publications deal with the topic of WiLD Large WMN instead of point-to-point links Simulations for validation and different assumptions (no BER) A revised version of Binachis’ model was chosen as a base: Based on conditional probability Well studied by several researchers Validated against simulations M. Rademacher 5 Introduction State of the Art Methodology Results Conclusion Methodology - 802.11 MAC modeling in a nutshell Two important observations for saturated link conditions: - The presence of a discrete time-scale (slot time σ) - Only three different events can occur on the channel 1 2 3 Transmission successful: Ps and Ts Collision: Pc and Tc Idle: Pi and σ 1-3 Can be expressed with a constant transmission and collision probability! Saturation throughput (S): S[ Bit Ps E [P] ]= Time Pi σ + Ps Ts + Pc Tc M. Rademacher Average access delay (D): D= N S/E [P] 6 Introduction State of the Art Methodology Results Conclusion Numerous extensions: integrated (#) or developed ( ) # Erroneous links (BER) # Backoff-freezing and anomalous slots # The current 802.11-2012 standard specifications Long-distance point-to-point links The 802.11n standard Physical Layer extension (HT-MCS and MIMO) A-MPDU MAC aggregation on erroneous links Additional delay factors (System Delay) Reordering Time Buffer and Processing Times Finite Buffering (Throughput decrease) Peculiarities of Hardware and the Linux Soft-MAC M. Rademacher 7 Introduction State of the Art Methodology Results Conclusion Validation on real-world WiLD links Outdoor router, modified Linux Kernel Developed measurement tools Delay correction Design of Experiments ≈ 5000 different measurements Model deviation 1 mean: TDiff mean: DDiff median: TDiff median: DDiff Overall low deviations (≈ 0.02),... 0.1 ... independent of the link distance. Deviation slightly higher for 0.01 0.001 0 1 M. Rademacher 2 3 4 5 Distance [km] 6 7 8 - The delay - High A-MPDU factors 8 Introduction State of the Art Methodology Results Conclusion What to-do with the developed modeling approach: 1. Estimation Influence of the distance Influence of the payload size Influence of the aggregation factor Influence of the BER on throughput and delay 2. Optimization of the 802.11 MAC parameters Optimum CW and R to maximize throughput and minimize delay M. Rademacher 9 Introduction State of the Art Methodology Results Conclusion Estimation: 802.11a WiLD links 6 Mbps 24 Mbps 54 Mbps 10 24 8 18 6 12 4 6 2 0 0 10 20 30 Distance [km] 40 Delay [ms] Throughput [Mbps] 30 0 50 Throughput (fixed) and delay (dotted) for 802.11a 20 MHz, 1450 Bytes, IP/UDP bi-directional saturation M. Rademacher 10 Introduction State of the Art Methodology Results Conclusion Estimation: 802.11n WiLD links agg=−3 agg=0 18 agg=3 100 15 80 12 60 9 40 6 20 3 0 0 10 20 30 Distance [km] 40 Delay [ms] Throughput [Mbps] 120 0 50 Throughput (fixed) and delay (dotted) for 802.11n 20 MHz, 1450 Bytes, MIMO, MCS 15, IP/UDP bi-directional saturation A-MPDU=213+agg Bytes M. Rademacher 11 Introduction State of the Art Methodology Results Conclusion Optimization - A multi single-objective problem Scalarization Payload MCS Model Throughput f(T,D)= Optimizer maximize Retry Delay Distance CWmin Retry + CWmin 50 0.4 1 / Delay [ms] Delay [ms] 40 30 20 0.2 v u u t 0.1 10 0 0 ∀ CWmin and R maximize 0.3 5 10 Throughput [Mbps] M. Rademacher 15 0 0 5 10 Throughput [Mbps] F Di Dmax !2 + Si Smax 2 15 12 Introduction State of the Art Methodology Results Conclusion Optimization - 802.11a Distances (1-50 km) Payload (50-1450 Byte) Modulations (all) 6 Mbps 0.8 0.6 0.6 0.4 0.4 0.2 0.2 10 20 30 Distance [km] CWmin=7 200 0.8 400 Payload [Byte] Optimum CWmin [%] CWmin=3 0.6 0.4 600 800 1000 0.2 1200 0 6 M. Rademacher 9 12 18 24 Modulation 36 1 54 Mbps 0.8 0 0 1 24 Mbps 48 54 1400 0 50 40 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 7 3 3 3 3 3 3 3 7 3 3 3 3 3 3 3 7 3 3 3 3 3 3 3 7 7 3 3 3 3 3 3 7 7 3 3 3 3 3 3 7 7 3 3 3 3 3 3 7 7 7 3 3 3 3 3 7 7 7 3 3 3 3 3 7 7 7 3 3 3 3 3 6 9 12 18 24 36 48 54 Modulation 13 Delay decrease Parameter: Throughput increase 1 Introduction State of the Art Methodology Results Conclusion Optimization - 802.11n 15 31 31 15 15 15 15 15 31 15 15 15 15 15 15 15 10 15 Payload (50-1450 Byte) 15 15 15 15 15 15 15 15 15 15 15 15 15 15 7 7 15 15 15 15 15 15 15 15 15 15 15 15 15 7 7 7 15 15 15 15 15 15 15 15 15 15 15 15 7 7 7 7 15 15 15 15 15 15 7 7 15 15 15 15 7 7 7 7 15 15 15 15 15 7 7 15 15 15 7 7 7 7 7 15 15 15 15 15 7 7 7 15 15 15 7 7 7 7 7 15 15 15 15 15 7 7 7 15 15 15 7 7 7 7 7 15 15 15 15 7 7 7 7 15 15 7 7 7 7 7 7 15 15 15 15 7 7 7 7 15 15 7 7 7 7 7 7 15 15 15 15 7 7 7 7 15 15 7 7 7 7 7 7 15 15 15 15 7 7 7 7 15 15 7 7 7 7 7 7 15 15 15 7 7 7 7 7 15 7 7 7 7 7 7 7 15 15 15 7 7 7 7 7 15 7 7 7 7 7 7 7 15 15 15 7 7 7 7 7 15 7 7 7 7 7 7 7 15 15 15 20 MCS (0-15) 7 7 7 7 7 7 15 7 7 7 7 7 7 15 15 7 7 7 7 7 15 7 7 7 7 7 7 7 15 7 7 7 7 7 7 15 7 7 7 7 7 7 7 7 15 7 7 7 7 7 7 15 7 7 7 7 7 7 7 2 4 6 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 10 15 7 7 7 0 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 5 Distance [km] A-MPDU factor 5 Distance [km] Bandwidth (20/40 MHz) 15 31 31 31 31 15 15 15 31 31 31 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 Parameter: 15 15 15 15 15 15 15 15 15 15 15 15 15 15 7 7 15 15 15 15 15 15 15 15 15 15 15 15 15 7 7 8 10 12 14 MCS 7 7 7 7 15 15 15 15 15 15 15 15 15 15 15 15 7 7 7 15 15 15 15 15 15 15 15 15 15 15 15 7 7 7 7 15 15 15 15 15 15 15 7 15 15 15 15 7 7 7 7 15 15 15 15 15 15 7 7 15 15 15 15 7 7 7 7 15 15 15 15 15 7 7 7 15 15 15 7 7 7 7 7 15 15 15 15 15 7 7 7 15 15 15 7 7 7 7 7 15 15 15 15 15 7 7 7 15 15 15 7 7 7 7 7 15 15 15 15 15 7 7 7 15 15 15 7 7 7 7 7 15 15 15 15 7 7 7 15 15 15 7 7 7 7 7 15 15 15 7 7 7 7 15 15 7 7 7 7 7 7 7 15 15 15 7 7 7 7 15 15 7 7 7 7 7 7 0 2 4 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 5 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 ⇒ Less throughput gain 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 7 15 15 15 15 15 15 15 15 15 15 15 15 15 15 7 15 15 15 15 15 15 15 15 15 15 15 15 15 7 7 7 15 15 15 15 15 15 15 15 15 15 15 15 15 7 7 7 15 15 15 15 15 15 15 15 15 15 15 15 15 7 7 7 15 15 15 15 15 15 15 15 15 15 15 15 15 7 7 7 7 15 15 15 15 15 15 15 15 15 15 15 15 7 7 7 7 15 15 15 15 15 15 15 15 15 15 15 7 7 7 7 7 15 15 15 15 15 15 15 15 15 15 15 7 7 7 7 0 2 4 6 8 10 12 14 MCS (c) 32 KBytes M. Rademacher 7 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 Distance [km] Distance [km] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 CWmin = 15 is the default 8 10 12 14 MCS 15 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 6 (b) 16 KBytes 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 Higher variation of optimum 7 7 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 10 7 7 7 15 31 31 31 31 31 31 31 31 31 31 31 31 15 15 15 5 7 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 20 (a) 8 KBytes Distance (1-20 km) 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 10 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 20 7 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 7 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 7 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 0 2 4 6 8 10 12 14 MCS (d) 64 KBytes 14 Introduction State of the Art Methodology Results Conclusion Conclusion and Contribution A unified model for 802.11a/802.11n long-distance point-to-point links Extension to the well-known DCF model by Bianchi Extensive verification on real hardware ∃ An optimum value for CWmin and R The range of this optimum values is less than expected beforehand A QoS gain especially for 802.11a Designer of WiLD can use this model to estimate and optimize the links beforehand, thus enabling a more accurate network planning. M. Rademacher 15 Introduction State of the Art Methodology Results Conclusion Future work Include loss in optimization function (important for TCP) Shift up- and downlink capacities using MAC parameter Machine Learning of the current traffic situation Evaluate a new MAC layer for WiLD links Frequency Division Multiplexing (FDD) Token based approach TVWS integration using off-the-shelf WiFi cards Access technologies for WiLDs M. Rademacher 16 References Q&A Thank your for your attention. Are there any questions? M. Rademacher 17 References References I [1] Bianchi, G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications 18, 3 (1998), 535–547. [2] [3] Bianchi, G., and Tinnirello, I. Remarks on IEEE 802.11 dcf performance analysis. Communications Letters, IEEE 9, 8 (2005), 765–767. Bing, B. Emerging Technologies in Wireless LANs - Theory, Design, and Deployment, 1. ed. Cambridge University Press, Cambridge, 2008. [4] Cali, F., Conti, M., and Gregori, E. IEEE 802.11 wireless lan: capacity analysis and protocol enhancement. In Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies (1998), pp. 142–149. [5] Foh, C. H., and Tantra, J. Comments on ieee 802.11 saturation throughput analysis with freezing of backoff counters. Communications Letters, IEEE 9, 2 (2005), 130–132. [6] Ieee standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks - specific requirements - part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999) (Dec 2007), 1–1076. M. Rademacher 18 References References II [7] Ieee standard for information technology-telecommunications and information exchange between systems local and metropolitan area networks-specific requirements part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications. [8] Rademacher, M., Kretschmer, M., and Jonas, K. Exploiting ieee802.11n mimo technology for cost-effective broadband back-hauling. In Fifth International IEEE EAI Conference on e-Infrastructure and eServices for Developing Countries (Oct 2013). [9] S Salmer´ on-Ntutumu, J Sim´ o-Reigadas, R. P. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007) (Feb 2012), 1–2793. Comparison of mac protocols for 802.11-based long distance networks. In Proceedings of the 1st Workshop Wireless For Development (Aug 2008). [10] Simo-Reigadas, J., Martinez-Fernandez, A., Ramos-Lopez, J., and Seoane-Pascual, J. Modeling and optimizing ieee 802.11 dcf for long-distance links. IEEE Transactions on Mobile Computing 9, 6 (2010), 881–896. [11] Ziouva, E., Antonakopoulos, T., Ziouva, E., and Antonakopoulos, T. Reprint csma/ca performance under high traffic conditions: Throughput and delay analysis, Feb 2002. M. Rademacher 19 References Backup M. Rademacher 20 References Validation - Influence of different buffer-sizes 802.11n 60 30 100 24 80 18 60 12 40 6 20 40 MCS 7 Model MCS 3 Model 30 20 0 0 20 40 60 Buffer size in KByte 80 10 0 0 100 (a) MCS 3 100 60 48 80 50 36 60 24 40 12 20 20 40 60 Buffer size in KByte (c) MCS 7 M. Rademacher 80 0 100 Throughput [Mbps] 60 0 0 20 40 60 80 Buffer size [KByte] 100 (b) Without buffer modeling Delay [Mbps] Throughput [Mbps] Throughput [Mbps] Delay [Mbps] Throughput [Mbps] 50 40 MCS 7 Model MCS 3 Model 30 20 10 0 20 40 60 80 Buffer size [KByte] 100 (d) With buffer modeling 21 References Estimation: Influence of the BER for 802.11n WiLD links 120 18 agg=0 agg=3 100 15 80 12 60 9 40 6 20 3 0 −8 10 −7 10 −6 10 BER −5 10 Delay [ms] Throughput [Mbps] agg=−3 0 −4 10 Throughput (fixed) and delay (dotted) for 802.11a 20 MHz, 1450 Bytes, 5 km, MIMO, MCS 15 M. Rademacher 22 References Validation - Influence of different buffer-sizes 802.11n 60 30 100 24 80 18 60 12 40 6 20 40 MCS 7 Model MCS 3 Model 30 20 0 0 20 40 60 Buffer size in KByte 80 10 0 0 100 (a) MCS 3 100 60 48 80 50 36 60 24 40 12 20 20 40 60 Buffer size in KByte (c) MCS 7 M. Rademacher 80 0 100 Throughput [Mbps] 60 0 0 20 40 60 80 Buffer size [KByte] 100 (b) Without buffer modeling Delay [Mbps] Throughput [Mbps] Throughput [Mbps] Delay [Mbps] Throughput [Mbps] 50 40 MCS 7 Model MCS 3 Model 30 20 10 0 20 40 60 80 Buffer size [KByte] 100 (d) With buffer modeling 23 References Traffic Class seperation 1.2 CWmin=3 CWmin=7 CWmin=15 PPS ratio 1 0.8 PPSj 0.5(1 − τ )2δj ≈ PPSk 1 − 0.5(1 − τ )2δj 0.6 0.4 0.2 0 0 1 2 3 4 5 AIFS(BE) Two different techniques can be applied to protect traffic classes: CWmin differentiation AIFS differentiation Even small values for AIFS => high traffic class separation Amount of separation depend on CWmin as well M. Rademacher 24 References Influence of the payload size 802.11a and 802.11n 6 Mbps 24 Mbps 54 Mbps 8 15 6 10 4 5 2 0 0 500 1000 Payload Size [Byte] Delay [Mbps] Throughput [Mbps] 20 0 1500 Influence of the Payload for 802.11a M. Rademacher 25 References Influence of the payload size 802.11a and 802.11n agg=−3 agg=0 agg=3 18 100 15 80 12 60 9 40 6 20 3 0 0 500 1000 Payload [Byte] Delay [ms] Throughput [Mbps] 120 0 1500 Influence of the Payload for 802.11n A-MPDU aggregation 20MHz MCS 15 M. Rademacher 26 References Influence of the errounous links 802.11a and 802.11n 20 6 Mbps 24 Mbps 54 Mbps 30 20 10 15 10 Delay [ms] Throughput [Mbps] 25 15 5 5 0 0 0.2 0.4 0.6 0.8 0 1 PER Influence of the PER for 802.11a M. Rademacher 27 References Influence of the errounous links 802.11a and 802.11n 120 18 agg=0 agg=3 100 15 80 12 60 9 40 6 20 3 0 −8 10 −7 10 −6 10 BER −5 10 Delay [ms] Throughput [Mbps] agg=−3 0 −4 10 Influence of the BER for 802.11n A-MPDU aggregation 20MHz MCS 15 M. Rademacher 28
© Copyright 2024 ExpyDoc