A pulsar wind nebula associated with PSR J2032+4127 as the

A pulsar wind nebula associated with PSR J2032+4127
as the powering source of TeV J2032+4130
Javier Mold´
on
Netherlands Institute for Radio Astronomy
Extreme Astrophysics in an Ever-Changing Universe
Crete, June 16, 2014
Collaborators
• J. M. Paredes, Universitat de Barcelona
• V. Zabalza, The University of Leicester
• V. Bosch-Ramon, Universitat de Barcelona
• M. Rib´
o, Universitat de Barcelona
• J. Mart´ı, Universidad de Ja´
en
• M. Kramer, Max-Planck-Institut f¨
ur Radioastronomie
• A. G. Lyne, Jodrell Bank Centre for Astrophysics, The University of
Manchester
• B. W. Stappers, Jodrell Bank Centre for Astrophysics, The University
of Manchester
Extreme Astrophysics
Collaborators
2
The gamma-ray sky
http://tevcat.uchicago.edu/
• VHE (> 100 GeV) sky as seen by Cherenkov telescopes. ∼140 sources
• 46 extragalactic. 61 galactic. ∼30 unidentified
Extreme Astrophysics
Introduction
3
First unidentified source: TeV J2032+4130
• Observed by HEGRA in
1999-2001
• Significance of 6.1σ
• Steady flux on yr timescales
• Extended with radius
6.2 ± 1.2 ± 0.9 arcmin
• Hard spectrum with index
−1.9 ± 0.1stat ± 0.3/rmsys
• Integral flux > 1 TeV at the
level of ∼5% Crab
[Aharonian et al. 2002, A&A 293, L37]
Extreme Astrophysics
Introduction
4
TeV counterpart (MAGIC)
[Albert et al. 2008, ApJ, 675, L25]
• Extension of the energy spectrum down to 400 GeV. No spectral break
• Extension of the source: ∼5 arcmin (assuming Gaussian shape)
• No flux variability over several yr, compatible with HEGRA (not
Whipple)
Extreme Astrophysics
Introduction
5
TeV counterpart (VERITAS)
[Aliu et al. 2014, ApJ 783, 16]
Extreme Astrophysics
Introduction
6
PSR J2032+4127
[Camilo et al. 2009, ApJ 705,1]
• Fermi: GeV pulsar LAT PSR J2032+4127
[Abdo et al. 2009, Sci 325, 840]
• P = 143 ms, τc = 0.11 Myr, E˙ sp =2.7 × 1035 erg s−1
• GBT: radio pulsar same position and period GeV pulsar, and a Be star
Extreme Astrophysics
Introduction
7
Field around PSR J2032+4127
Suzaku
VLA 6 cm
[Murakami et al. 2011, PASJ, 63, 873]
Extreme Astrophysics
[Butt et al. 2008, MNRAS 385, 1764]
Introduction
8
Observations
• VLA
• June 28, 2010
• Two frequency bands centered at 4.4 and
7.8 GHz
• D configuration
• EVN
• Observations on 2010, 2011, and 2014
• 1.6 GHz
• Pulsar gating
• Chandra
• Archival data, 0.5-10 keV band, 48.7 ks
observation on 2004 July 12 with the
Advanced CCD Imaging Spectrometer
(ACIS) detector.
Extreme Astrophysics
Observations
9
Observations
• VLA
• June 28, 2010
• Two frequency bands centered at 4.4 and
7.8 GHz
• D configuration
• EVN
• Observations on 2010, 2011, and 2014
• 1.6 GHz
• Pulsar gating
• Chandra
• Archival data, 0.5-10 keV band, 48.7 ks
observation on 2004 July 12 with the
Advanced CCD Imaging Spectrometer
(ACIS) detector.
Extreme Astrophysics
Observations
9
Observations
• VLA
• June 28, 2010
• Two frequency bands centered at 4.4 and
7.8 GHz
• D configuration
• EVN
• Observations on 2010, 2011, and 2014
• 1.6 GHz
• Pulsar gating
• Chandra
• Archival data, 0.5-10 keV band, 48.7 ks
observation on 2004 July 12 with the
Advanced CCD Imaging Spectrometer
(ACIS) detector.
Extreme Astrophysics
Observations
9
VLA
VLA: Extended radio emission
Extreme Astrophysics
VLA
9
δJ2000
Extended radio emission: a PWN
280
+ PSR J2032+4127
VLA 4.4 GHz
+41◦ 270
18s
16s
Extreme Astrophysics
14s
αJ2000
12s
20h 32m 10s
VLA
10
δJ2000
Extended radio emission: a PWN
280
+ PSR J2032+4127
VLA 4.4 GHz
VLA 7.9 GHz
+41◦ 270
18s
16s
Extreme Astrophysics
14s
αJ2000
12s
20h 32m 10s
VLA
10
Radio spectrum
Flux density [mJy]
4.0
1.0
GMRT
GBT
VLA
GBT
0.1
1
2
3
Frequency [GHz]
4
5 6 7 8 9
• Pulsar spectrum: Sν = (0.36 ± 0.02)(ν/GHz)−1.6±0.1 mJy
• Insignificant contribution from the pulsar: α = −0.4 ± 0.4
Extreme Astrophysics
VLA
11
EVN
EVN: Pulsar proper motion
Extreme Astrophysics
EVN
11
δJ2000
PSR J2032+4127 proper motion
280
+41◦ 270
18s
16s
µα cos δ = −2.0±2.0 mas yr−1
µδ = −10.8 ± 2.0 mas yr−1
Extreme Astrophysics
14s
αJ2000
12s
20h 32m 10s
αJ2000.0 = 20h 32m 13.125 ± .002s
δJ2000.0 = +41◦ 270 24.44 ± 0.02”
EVN
12
δJ2000
PSR J2032+4127 proper motion
280
+41◦ 270
18s
16s
µα cos δ = −2.0±2.0 mas yr−1
µδ = −10.8 ± 2.0 mas yr−1
Extreme Astrophysics
14s
αJ2000
12s
20h 32m 10s
αJ2000.0 = 20h 32m 13.125 ± .002s
δJ2000.0 = +41◦ 270 24.44 ± 0.02”
EVN
12
δJ2000
PSR J2032+4127 proper motion
280
+41◦ 270
18s
16s
µα cos δ = −2.0±2.0 mas yr−1
µδ = −10.8 ± 2.0 mas yr−1
Extreme Astrophysics
14s
αJ2000
12s
20h 32m 10s
2D velocity: 90–190 km s−1
at 1.7–3.6 kpc
EVN
12
Galactic velocity
vrad [km s−1 ]
0
−40
• Components of the Galactic and
−80
peculiar velocity of PSR
J2032+4127.
−120
−160
vcir [km s−1 ]
360
• The grey areas indicate the
320
280
expected Galactic velocity for
young stars.
240
200
160
• (II) Assuming radial velocity of:
vz [km s−1 ]
0
+100 km/s (dashed line)
-100 km/s (dotted line)
−40
−80
vpec [km s−1 ]
−120
160
The velocities are not compatible
with the expected ones from
Galactic rotation
120
80
40
0
1.5
2.0
2.5
3.0
Distance [kpc]
Extreme Astrophysics
3.5
4.0
EVN
13
Galactic velocity
vrad [km s−1 ]
0
−40
• Components of the Galactic and
−80
peculiar velocity of PSR
J2032+4127.
−120
−160
vcir [km s−1 ]
360
• The grey areas indicate the
320
280
expected Galactic velocity for
young stars.
240
200
160
• (II) Assuming radial velocity of:
vz [km s−1 ]
0
+100 km/s (dahsed line)
-100 km/s (dotted line)
−40
−80
vpec [km s−1 ]
−120
160
The velocities are not compatible
with the expected ones from
Galactic rotation
120
80
40
0
1.5
2.0
2.5
3.0
Distance [kpc]
Extreme Astrophysics
3.5
4.0
EVN
14
Widefield
360
320
δJ2000
Contours: JVLA 4.4 GHz
Black Cross: EVN, pulsar
Black dots every 5000 yr
280
+41◦ 240
40s
Extreme Astrophysics
20s
32m 00s
αJ2000
20h 31m 40s
EVN
15
Widefield
VERITAS
Contours: JVLA 4.4 GHz
Black Cross: EVN, pulsar
Black dots every 5000 yr
Red ellipse: Fermi
0
36
MAGIC
δJ2000
320
280
+41◦ 240
HEGRA
40s
Extreme Astrophysics
20s
32m 00s
αJ2000
20h 31m 40s
EVN
The past trajectory of PSR
J2032+4127 coincides with
the measurement of the
CoG of the TeV emission
measured with MAGIC,
which is compatible with
the measured positions from
HEGRA and VERITAS
16
Chandra
Chandra: diffuse X-ray emission
Extreme Astrophysics
X-ray
16
Diffuse X-ray emission
290
280
δJ2000
Contours: JVLA 4.4 GHz
Cross: EVN, pulsar
Red Crosses: Chandra
270
+41◦ 260
20s
16s
12s
αJ2000
Extreme Astrophysics
20h 32m 08s
X-ray
17
Diffuse X-ray emission
290
280
δJ2000
Contours: JVLA 4.4 GHz
Cross: EVN, pulsar
Red Crosses: Chandra
Color scale: diffuse Chandra
270
+41◦ 260
20s
16s
12s
αJ2000
Extreme Astrophysics
20h 32m 08s
X-ray
18
X-ray/gamma-ray correlation
• Correlations of the X-ray and
gamma-ray fluxes with E˙ and τc :
• E˙ sp = 2.7 × 1035 erg s−1 ⇒
LX = 7.4 × 1030 erg s−1 or
FX = 2.2 × 10−14 erg cm−2 s−1
• τc = 0.11 Myr ⇒ Fγ /FX ∼ 1000 ⇒
Lγ = 7.4 × 1033 erg s−1
[Mattana et al. 2009 ApJ 694 12]
Extreme Astrophysics
Correlation
19
X-ray/gamma-ray correlation
• Correlations of the X-ray and
gamma-ray fluxes with E˙ and τc :
• E˙ sp = 2.7 × 1035 erg s−1 ⇒
LX = 7.4 × 1030 erg s−1 or
FX = 2.2 × 10−14 erg cm−2 s−1
• τc = 0.11 Myr ⇒ Fγ /FX ∼ 1000 ⇒
Lγ = 7.4 × 1033 erg s−1
[Mattana et al. 2009 ApJ 694 12]
Extreme Astrophysics
Correlation
19
Diffuse X-ray emission
290
The diffuse emission could be:
• Partially from the PWN
itself.
0
δJ2000
28
• Unrelated source. Field
young stars?
270
• e− escaping from the
shock?
+41◦ 260
20s
16s
12s
αJ2000
Extreme Astrophysics
20h 32m 08s
Correlation
20
Scenario
• High speed pulsar forms a shock at ∼ 100 .
• High energy particles are accelerated and escape the shock region.
• If leptonic, they could be the responsible of the TeV source through
IC in the Thomson regime off CMB and IR galactic photons with
energy density uCMB−IR ∼ 1 eV.
• Diffusion coefficient of D ∼ 1026 cm2 s−1 , tdiff ∼ 30 − 50 kyr.
• Particles are advected by the shocked flow in the opposite direction to
the pulsar motion. These relativistic particles produce radio
(detected) and X-ray emission (not detected yet).
• The size of the TeV source is compatible with a projected velocity of
∼ 100 km s−1 .
Extreme Astrophysics
Scenario
21
Conclusions
• The radio morphology strongly resembles that of a PWN.
• The positional coincidence between the pulsar and the origin of this
elongated radio structure suggests a physical association.
• This is supported by the proper motion of the pulsar, opposite to the
radio structure.
• The pulsar space velocity is not compatible with the Galactic rotation.
Probably formed with a kick.
• The absence of diffuse X-ray emission overlapping the elongated radio
structure could be explained by the low flux expected.
• The extended X-ray emission detected with Chandra and Suzaku
remains unclear. (Associated with the Be stars in the field?).
Extreme Astrophysics
Conclusions
22