工學碩士 學位論文 스테레오 비젼을 이용한 삼차원 형상 계측을 위한 이미지 매칭 알고리즘 개발 Development of an Image Matching Algorithm for the Measurement of 3-D Geometry Using Stereo Vision 2000 年 2 月 서울市立大學校 大學院 制御計測工學科 李 好 宰 스테레오 비젼을 이용한 삼차원 형상 계측을 위한 이미지 매칭 알고리즘 개발 Development of an Image Matching Algorithm for the Measurement of 3-D Geometry Using Stereo Vision 지도교수 : 김희식 이 논문을 석사학위 논문으로 제출함 2000 년 11 월 서울市立大學校 大學院 制御計測工學科 李 好 宰 이호재의 제어계측공학 석사학위 논문을 인준함. 심사위원장 인 심사위원 인 심사위원 인 2000 년 12 월 서울시립대학교 대학원 Abstract In this thesis, we present an approach for matching stereo pair images from finding interesting points and applying gradient based image matching algorithm. The stereo matching is correspondence problem. The correspondence problem can be stated as follows: for each point in the left image, find the corresponding point in the right image. To match the two points, it is necessary to measure the similarity of the points. Clearly, the point to be matched should be distinctly different from its surrounding pixels; otherwise, every point would be a match. Thus, it is necessary to extract interesting features. There are several methods to find distinct points in an image. We commonly use the Förstner Interest Operator. This method finds edges, outstanding points, the center of circles, etc. We first apply this operator to find outstanding points in left image, then we need to match the conjugate pair points in right image. Simply, we can guess that it is not effective to calculate whole image to find matching points. Initially, we set the range of finding region in right image and in this range we proceed the gradient based image matching method. Even though there are several limitations such as occlusion, compression effect, etc, we can conclude this thesis is very appropriate to apply real images. Keywords : Stereo Vision, Image Matching, Interesting Point, Pattern Recognition, Machine Vision, Robot Vision i Contents Abstract … … … … … … … … … … … … … … … … … … …. i Contents … … … … … … … … … … … … … … … … … … … . … … … … . ii List of Figures … … . … … … … … … … … … … … … … … … … … … … iv List of Tables … … … … … … … … … … … … … … … … … … . … … … .. v i 1. Introduction … . … … … … … … … … … … … … … .. … … … … … … . 2. Stereo Image Matching 2.1 A Review of Stereo Vision … … … … … … … … … … … … … … .. … . 3 … … … … … … … … … … … … … … .. … 3 2.1.1 Camera Model and Image Formation 2.1.2 Stereo Geometry 1 … … … … … .. … … .. … 3 … … … … … … … … … … … … … … … . … ... 5 2.2. Stereo Image Matching Methods … … … … … … … … … … … . … … . 9 2.2.1 What is Stereo Matching? … … … … … … … … … . . … … . … … … 9 2.2.2 Edge based Matching Method 2.2.3 Region Correlation … .. … … … … … … … . … … … 9 … … … … … … … … … … … … … . … … .. 13 2.2.4 Least Square Matching Method … … … … … … … … . … . …. 13 … … . … … … … … … … … . …. …. 14 … … … … … … … … … … … . … … … … . …. …. 16 2.2.5 Gradient-Based Matching 2.3 Interesting Points 2.3.1 The Difference of Direction .. … … … … … … … … … . … . … 16 … .. … … … … … … … . . … … 17 2.3.2 The Förstner Interest Operator 3. Experiment of 3D Geometry Measurement … … .. … ... … . 19 3.1 H/W Specification … … … … … … … … … … … … … … … .. … … . 19 3.2 S/W Specification … … … … … … … … … … … … … . … … .. … … . 21 … … … … … … … . … … … … … … … … … . . … … … . . … … ..... 23 4. Result 4.1 Result of Finding Interest Points Using Förstner Interest Operator … 23 4.2 Apply gradient-based Image Matching Method to Real Images ii … 27 5. Conclusion … … … … … … … . … … … … … … … … … . … … ... 42 References … … … … … ... … … … … … … … … … . . … … … . . … … .. 43 Abstract(Korean) … .. … . … … … … … … … … … . . … … … . . … … ... 45 Dedication … … … … … … … … . … … … … … … … … … . . … … … . … 46 iii List of Figures <Figure 1> Typical Optical 3D-measurement Setup … … … … … … … … … … … .. 4 <Figure 2> An illustration of perspective projection showing the line of sight that is used to calculate the projected point (x’,y’) from the object point (x,y,z). … … … … 5 <Figure 3> Principle of bundle adjustment for image triangulation … … … … … . … . 7 <Figure 4> Stereo geometry. The disparity of a scene point P of depth Z. … … … ... 8 <Figure 5> > A reference image area(10x10) and a searching image area(100x100) … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … .. 15 <Figure 6> Flow chart of the system … … … … … … … … … … … … … … … … ... 22 <Figure 7> Original Pair Images. (a) The left image (b) The right image … … 24 <Figure 8> The results of finding interesting points. The white points represent interesting points. (a) The left image (b) The right image … … .. … … … … . … 25 <Figure 9> The final results of finding interesting points of <Fig. 6> by removing non-local maxima. The white points represent interesting points. (a) The left image (b) The right image … … … … … … … … … … … … … … … … … … … … . … .. <Figure 10> Original Pair Images. (a) The left image (b) The right image … … .. 26 27 <Figure 11> The final results of finding interesting points by removing non-local maxima. The white points represent interesting points. (a) The left image (b) The right image … … … … … … … … … … … … … … … … … … … … … … … … … … … …. 28 <Figure 12> Result of gradient based evidence(1) … … … … … … … … … … . . … . 29 <Figure 13> Result of gradient based evidence(2) … … … … … … … … … … … .. 30 <Figure 14> The 2D matching result. The lined white points represent matched pairs. … … … … … … … … … … … … … … … … … … … … … … … … …. … … … … …. …. 31 <Figure 15> The 2D matching result. The lined white points represent matched pairs. … … … … … … … … … … … … … … … … … … … … … … … … … … .. … … … … … . 32 <Figure 16> Original captured images. (a) The image of left view. (b) The image of right view. … … … … … … … … … … … … … … … … … … … … … … . . … … … … ... 33 <Figure 17> The 3D Image matching result of <Figure 13> with error points. The white points of left image represent interesting points. The white points of right image iv represent each matched points. … … … … … … … … … … … … … … … … … … . . … 34 <Figure 18> The 3D Image matching result of <Figure 13> with eliminating error points. The white points of left image represent interesting points. The white points of right image represent each matched points. … … . … … … … … … … … … … … . . … 35 <Figure 19> Original captured images. (a) The image of left view. (b) The image of right view. … … … … … … … … … … … … … … … … … … … … … … … … … … . … . 36 <Figure 20> The 3D Image matching result of <Figure 16> with error points. The white points of left image represent interesting points. The white points of right image represent each matched points. … … … … … … … … … … … … … … … … … … . . … 37 <Figure 21> The 3D Image matching result of <Figure 16> with eliminating error points. The white points of left image represent interesting points. The white points of right image represent each matched points. … … . … … … … … … … … … … … . . … 38 <Figure 22> Original captured images. (a) The image of left view. (b) The image of right view. … … … … … … … … … … … … … … … … … … … … … … … … … . . … … . 39 <Figure 23> The 3D Image matching result of <Figure 19> with error points. The white points of left image represent interesting points. The white points of right image represent each matched points. … … … … … … … … … … … … … … … … … … . . … 40 <Figure 24> The 3D Image matching result of <Figure 19> with eliminating error points. The white points of left image represent interesting points. The white points of right image represent each matched points. … … . … … … … … … … … … … … . . … v 41 List of Tables <Table 1> History of Photogrammetry … … … … … … … … … … … … … … . … ... <Table 2> Application of Optical 3D-Measurement Techniques … … … … … .... 2 2 <Table 3> Properties of some correspondence algorithms for image matching … 10 <Table 4>Precision of image matching and edge detection …. … … … … … . … . 12 … … … … … … … … … … . …. 19 <Table 6> Camera Specification … … … … … … … … … … … … … … … … … …. 20 <Table 7> Software specification … … … … … … … … … … … … … … ... … … … . 21 <Table 5> Image matching system specification <Table 8> The result of 2D and 3D image matching vi … … .. … … … . . … . … … … . 40 1. Introduction Stereo Vision is one of the earliest and most thoroughly investigated topics in the computer vision (see table 1), and an exhaustive discussion of related work in stereo vision is well beyond the scope of this thesis. All stereo methods must address the correspondence problem, that is the problem of finding matching points in two images of the same scene. Two image points match if they result from the projection of the same point in the scene. The desired output of a stereo correspondence algorithm is a disparity, specifying the relative displacement of matching points between images. There are several approaches in matching algorithm : Feature-based, Area-based, etc. Feature-based approaches only match points with a certain amount of local information (such as intensity edges). Area-based approaches match small image area, relying on the assumption that near points usually have similar displacements. The typical area-based stereo matching algorithm proceeds in the following way: 1. Preprocessing images (Band-pass filtering, etc.) 2. Compute a per-pixel matching cost. 3. Aggregate support spatially(e.g., by summing over a window, or by diffusion) 4. Across all disparities, find the best match based on the aggregated support 5. Compute a sub-pixel disparity estimate (optional) Other stereo techniques include hybrid and interactive techniques, such as stochastic search [Marroquin et al., 1987]and joint matching and surface reconstruction[Hoff and Ahuja, 1989; Olsen, 1990; Stewart et al., 1996]. More than two images are used in multiframe stereo to increase stability of the algorithm [Bells et al., 1987;Kang et al., 1995]. A special case is multiple-baseline stereo, where all images have identical epipolar lines [Okutomi and Kanade, 1993]. Table 1 states about the historical study of photogrammetry. The fundamental study of perspective projection was started from 1759. 1 <Table 1> History of Photogrammetry 1759 1839 1859 J.H. Lambert. “Ther Free Perspective” (Geometric Fundamental of the Photogrammetry) Arago, Daguerre, Niepce, Talbot. Negative picture 1901 A. Laussedat. Commission of Parisian Scientific Academy B. (Father of Photogrammetry) C. Pulfrich. Stereophotogrammetry 1923 W. Bauersfeld. Stereoplanigraphy(aerial photography) 1930s Optical-mechanical evauation machine 1950s Analytic photogrammetry, aerotriangulation, computer, TV 1980 From ISP onto ISPRS 1990s Digital photogrammetry Table 2 is about Application of Optical 3D-Measurement Techniques. We can use the thesis in this paper at industrial or non-industrial purpose. <Table 2> Application of Optical 3D-Measurement Techniques Industrial Non-industrial Automobile Shipbuilding Aerospace Plant Mining Architect Ergonomics Shoe, textile, cloth Archeology Anthropology Medical rehabilitation Monument preservation Sport Entertainment Plice, military 2 2. Stereo Image Matching 2.1 A Review of Stereo Vision 2.1.1 Camera model and image formation In general, we setup cameras to measure 3D geometry shown at Figure 1. Throughout this dissertation, we use perspective projection (see Figure 2, Figure 3 and Figure 4) as our geometric model of image formation: an image is formatted by projecting each scene point along a straight line through the center of projection onto an image plane. This is commonly referred to as the pinhole camera model. The pinhole camera is a powerful model that resembles very closely the operation of real cameras. The only principal differences are that real cameras have a lens instead of a simple hole, and the imaging surface is an array of sensors or film. Mathematically, perspective projection is most easily described using homogeneous [ωx ωy ωz ω] T called projective coordinates). In homogeneous coordinates, each point is ω ≠ 0 extended by a dummy coordinate coordinates (also that maps the point to a line through the origin in a space whose dimension is one higher than that of the original space. For example, a two-dimensional image point [ωx ωy ω ]T in (x,y) is represented by the set of vectors homogeneous coordinates: a three-dimensional point (X, Y ,Z) is represented by the set of vectors. Although homogeneous coordinates are redundant, they are very useful as they allow us to express otherwise non-linear transformations linearly. In particular, the perspective projection of a 3D-scene point onto a 2D-image plane can be written with the following linear equation using homogeneous coordinates: X u v = [P ] Y Z w 1 3 (2.1) <Figure 1> Typical Optical 3D-measurement Setup 4 In this equation, (X, Y, Z) are the coordinates of a scene point, and (x,y) = (u/w, v/w) are the coordinates of its projection. The projection matrix P is a 3x4 matrix defined up to a scalar factor that captures both the extrinsic and intrinsic camera parameters. The extrinsic parameters specify the position and orientation of the camera with respect to the scene coordinate system, while the intrinsic parameters specify the focal length, the aspect ratio, and the position of the origin of the image coordinate system. Therefore, if the camera is moved to a new position, we need to change only the extrinsic parameters. If all parameters are known, we can speak of a calibrated camera. Camera calibration can be achieved by observing a special calibration object whose dimensions and position are known. <Figure 2> An illustration of perspective projection showing the line of sight that is used to calculate the projected point (x’,y’) from the object point (x,y,z). 2.1.2 Stereo Geometry Stereo vision is the process of estimating the depth of scene points from their change in position between two images. Commonly, we need more than 2 cameras to calculate the depth of scene points (See Figure 3). This is done effortlessly by the human visual system, which translates the differences between the views from the two eyes into a three-dimensional impression of the scene. Figure 4 illustrates how the 5 disparity or change of image location, of a point is related to its depth for two identical parallel cameras. The figure shows a scene point P and its two images PL and xL X = f Z (2.2) PR in the left and right images, respectively. Let’s denote the focal length by f and the baseline (the distance between the two cameras) by b. Then, given that the scene point P has distance Z and lateral offset X, and given further that P’s images PL and PR have xR X + b = f Z (2.3) coordinates xL and xR, we can conclude from consideration of similar triangles that The disparity d is d = xR − xL = fb Z (2.4) Thus we can conclude Z is proportional to focal length f and baseline, and inversely proportional to its depth. 6 <Figure 3> Principle of bundle adjustment for image triangulation 7 P Z CR CL X b f PR PL xR xL <Figure 4> Stereo geometry. The disparity of a scene point P of depth Z. 8 2.2 Stereo Image Matching Methods 2.2.1 What is stereo matching? Stereo image matching problems are known as the correspondence problem. The correspondence problem can be stated as follows: for each point in the left image, find the corresponding point in the right image. To compute that two points, one in each image, form a conjugate pair, it is necessary to measure the similarity of the points. Clearly, the point to be matched should be distinctly different from its surrounding pixels; otherwise, every point would be a match. Thus, it is necessary to extract interesting features. There are several methods to find matching points such as regional matching, line matching and point matching, etc. Even if, however, there are lots of methods, the objective is finding matching points between more than two images. For example, in regional mating method, we commonly use cross correlation method and least square matching method. When we choose line-matching method, edge based matching method can be used. The point matching method is using interest points represent high variance point such as edge or isolated area. Table 3 and Table 4 show us the several proposed methods chronologically. 2.2.2 Edge based Matching Method This matching algorithm is that features are extracted from the left and right images by filtering the images, and the features are matched along the epipolar lines. This image matching algorithm uses edges detected by the first derivative of Gaussian. It is because the edges computed using the gradient of Gaussian are more reliable with respect to noise. In order to simplify the process, the search steps for a match for each feature in one image takes place along the corresponding epipolar line in the second image for a limited distance centered around it expected position. 9 <Table 3> Properties of some correspondence algorithms for image matching Author Year Hannah 1974 1989 1980 Barnard and Thompson Dreschier Features and Attributes of Similarity Interest Operator Measure Variance Correlation Moravec Intensity difference 1981 Corners Blobs 1982 Edges Intensity difference class Interest value Sign Strength 1981 1985 1982 Edges Direction sign Abstract edges Class 1983 Edges blobs Nagel and Enkelman n Förstner 1983 Corners Grad. + intens. Diff., direction Intensity difference Interest value 1986 1984 1986 Roundness and curvature of ACF corners Blobs Zimmer and Kories Faugeras Ayache and Faverjon 1984 Blobs SNR Interest value Distinctness Clas 1985/ 1987 Edges Orientation sighn Baker and Binford Grimson Stockman Kopstein, and Bennett Benard 10 Second page of Table 6 Author Year Ohta and Kanade Kanade Barnard 1985 Features and Attributes of Similarity Interest Operator Measure Edge Intensity difference 1987 1981 Corners Blobs Baker and Binford Witkin, Terzopoul os, and Kass 1986 Intensity values Interest value Intensity difference class Interest value Intensity constraint 1987 Correlation 11 <Table 4>Precision of image matching and edge detection Author Year Sharp, Christensen, and Gilman Bernstein 1965 Emirical Findings 1 Computer Simulations Theoretical Values Application/ Remarks Digital terrain models 1973 0.1 Klaasman 1975 Cafforio and Rocca 1976 McGillem and Svedlov 1976 Hill 1980 0.02-0.1 Binary images Target loaction Huang/Hsu 1981 0.02-0.1 Parallax estimation Förstner 1982 Thurgood and Mikhail 1982 Ackermann and Pertl 1983 Ho 1983 0.05-0.1 Binary images Target location Grün/Baltsav ias 1985 0.05-0.1 Parallax estimation Vosselman 1986 0.02-0.03 Target location Registration 0.05 0.1 Edge detection TV image sequences 0.5/SNR 0.01-0.1 0.02-0.1 Target location Target location 0.02-0.2 12 Registration Parallax estimation 2.2.3 Region Correlation An important limitation of edge matching methods for stereo matching is that the value of the computed depth is not meaningful along occluding edges. This method is used when we find a matching point with the region around the point. We choose one point and area around the point with specific size of reference window on one image and then select searching area expected that the matching point exists on second image. The searching area is also called searching window. If the reference window size is NXM, we can conclude the correlation between two images, N r (n, m) = M ∑∑ {G x =1 y =1 N w ( x , y ) − G } ⋅ {GS ( x, y ) − Gw } M [∑∑ {Gw ( x, y) − G w } N 2 x =1 y =1 (2.1) M ∑∑ {G x =1 y =1 ( x, y) − GS } ] 2 1/ 2 S where, r (n, m) : − 1 ≤ r(n, m) ≤ 1 correlation coefficient. Gw ( x, y) : the grayscale value of point (x,y) in reference window GS ( x, y): the grayscale value of point (x,y) in searching window Gw ( x, y): the mean value in reference window GS ( x, y): the mean value in searching window First, we find maximum r (n, mof) reference and searching window, if the value is over certain threshold, we can conclude that the point is matching point. This method, however, has several problems. For example, if the reference window is not enough big and the searching window is not enough small, the error rate is getting higher. 2.2.4 Least Square Matching Method This matching is that the least square value of point between reference and 13 searching window is the matching point. We assume that the reference window size is NxM, the value of point in this window is G w ( x w , y w ), certain point of searching window with same size of reference window isG S ( xS , the point y S ), the point placed near GS ( x S , y S ) in the searching window is GS0 ( xS0 , y 0S ). We need to find the point (xs, ys) that makes different value e(x,y) of two windows small. Gw ( x w , y w ) − Gs ( x s , y s ) = e( x, y ) (2.2) We can rewrite this equation as Gw ( x w , y w ) − e( x, y) = G s0 ( x s0 , y s0 ) + Gs x dxs + G s y dy s (2.3) where, Gsx = Gs y = ∂s 0x ( x 0s , y 0s ) ∂x s (2.4) ∂s 0y ( x s0 , y s0 ) (2.5) ∂xs 2.2.5 Gradient-Based Matching This matching method is similar to region correlation that find how well two locations in the two images resemble each other. It is, however, different that this method uses gradient values of images than intensity values of images in region correlation method. If gL, g R are the two gradient vectors to be compared, we use the average magnitude of the two gradients m = ( gL + gR ) / 2 (2.6) at a certain point to represent confidence, and the magnitude of the difference of the two gradients 14 − d = − gL − gR (2.7) to represent similarity. In this method, we combine similarity and distinctiveness into a single measure evidence for a match at a certain location under a certain displacement. Thus we define evidence as e = m − αd = (2.8) gL + gR − α gL − g R 2 The similarity is that how well two locations in the two images are match, and distinctiveness is that how well the matching is correct. In order to apply this method to discrete images, we approximate the gradients by differences. After an initial smoothing step with a Gaussian filter to compensate for quantization error and noise, the gradients in the x and y directions are computed by convolution with simple filter coefficients [-1 0 1] and [-1 0 1]T. In this experiments, we used a Gaussian filter coefficient to reduce noise in the images. 1024 10 10 100 Reference Interesting Point 768 1024 Searching Window 100 768 Right Image Left Image <Figure 5> > A reference image area(10x10) and a searching image area(100x100) 15 2.3 Interesting Points In matching points from two images, we need points that can be easily identified and matched in the two images. It’s needless to say that the points in a uniform region are not good candidates for matching. The interest operator finds areas of image with high variance such as edge or isolated area, etc. It is expected that there will be enough of such isolated areas in images for matching. 2.3.1 The Difference of Direction The variances along different directions computed using all pixels in a window centered about a point are good measures of the distinctness of the point along different directions. The directional variances are given by I1 = I2 = I3 = I4 = ∑ [ f (x , y ) − f (x, y + 1)] 2 (2.9) ( x , y )∈ S ∑ [ f (x , y ) − f (x + 1, y)] 2 (2.10) ( x , y )∈ S ∑ [ f ( x, y) − f ( x + 1, y + 1)] (2.11) ∑ [ f (x , y ) − f (x , y − 1)] (2.12) 2 ( x, y )∈S 2 ( x , y )∈ S Where S represents the pixels in the window. Typical window sizes range from 5 X 5 to 11 X 11 pixels. Since simple edge points have no variance in the direction of the edge, the minimum value of the above directional variances is taken as the interest value at the central pixel, (xc ,yc ). This eliminates edge pixels from consideration since an edge pixel in one image would match all pixels along the same edge in the second image, making it difficult to determine exact disparity. Thus, we have I ( xc , y c ) = min( I 1 , I 2 , I 3 , I 4 ) 16 (2.13) Finally, to prevent multiple neighboring points from being selected as interesting points for the same feature, feature points are chosen where the interest measure has a local maxima. A point is considered a good interesting point if this local maxima is greater than a preset threshold. 2.3.2 The Förstner Interest Operator They are suggested many other methods; Moravec, Hannah, Förstner, etc. All of them, the Fö rstner Interest Operator is used most commonly. The Förstner Interest Operator finds edges, outstanding points, the center of circles. The gradients of image set g x and g y each axis. These gradients are computed by Robert Operator or Sobel Operator. That is, Robert Operator : 1 hm (m, n) = 0 Sobel Operator : 0 − 1 − 1 0 1 hm (m, n) = − 2 0 2 − 1 0 1 , 0 1 hn (m, n) = − 1 0 (2.14) 2 1 1 , hn (m , n) = 0 0 0 (2.15) − 1 − 2 − 1 After we convolute whole image by one of these operators, find normalized matrix, ∑ g x2 N = ∑ g x g y ∑g g ∑g x 2 y y (2.16) For example, in the small window (7 x 7), the interest values q(the roundness), w(the weight) are follow, 17 N w= q= (2.17) trace( N ) 4N trace 2 ( N ) , 0<q<1 (2.18) The w is related by the size of error ellipse and proportional to contrast, and the q is related by the appearance. If we use the thresholding values, the weights are, w( x, y) = w( x, y) w(x, y) = 0 The q minand If q ( x , y ) ≥ q min and w( x, y) ≥ wmin (2.19) Otherwise. (2.20) wmin are thresholoding values. In this paper, we choose q min = 0.6 wmin = (2.21) wmax + wavg 5 (2.22) by experimentally. After we threshold the w by wmin, we remove non-local maxima. We remove all the w except the maximum w in specific window used 13x13 pixels in this experiment. 18 3. Experimental System of H/W and S/W 3.1 H/W Specification The stereo image matching system is mainly consisted of computer system and camera system shown as table 5 and table 6 respectively. <Table 5> Image matching system specification Specification CPU Pentium II (350MHz) RAM 128MB Video Card MAROX Millenium G-200 Capture Board MV-1500 Camera PULNiX TM-1001 Before applying the stereo matching algorithm, we need to acquire the stereo image. In this dissertation, we used PLUNiX TM-1001 camera and MV-1500 capture board. In order to apply image processing and image matching algorithm, we captured 1024x768 pixels grayscale image. This size of image is little bit big and we need much time to process the algorithm, we, however, can get accurate results. The detailed camera specification is shown as table 6. 19 <Table 6> Camera Specification PULNiX TM-1001 Specification Imager Pixel Cell Size Sync. Data clock output Resolution S/N Ratio Min. illumination Video output AGC Gamma Lens Power req. Operating temp. Vibration & shock Size (W x H x L) Weight Power supply Auto iris connector I/O 1" (9.1mm x 9.2mm) Progressive Scanning Interline Transfer CCD 1024 (H) x 1024 (V) 9.0µm x 9.0µm Internal/external auto switch HD/VD, 4.0 Vp-p impedance 4.7K ohm VD=15 Hz ±5%, non-interlace HD=15.75kHz±5 20.034 MHz (40.068 MHz for DSP) Digital: 1008 (H) x 1018 (V), Analog: over 700 TV lines (H) x 800 TV lines (V) 50dB min. ( AGC = off ) 1.0 lux, f=1.4 without IR cut filter (no shutter) Sensitivity: 10µV/e1.0 Vp-p composite video, 75 ohm and 8-bit RS-422 output ON*/OFF (OFF std.) *AGC is applicable on analog output only 0.45 or 1.0 (1.0 std.) C-mount (use 1" format lenses) Adjustable Back Focus 12V DC, 500 mA -10°C to 50°C Random Vibration: 7G (200 Hz to 2000 Hz) Shock: 70G 44mm x 48mm x 136mm (1.73" x 1.91" x 5.35") 330 grams (11.6 oz) PD-12P (includes power connector) none MP-211-031-113-4300 31-pin mating connector; 30DG-02, or 30DG-02K interface cable 20 3.2 S/W specification The image matching software specification is shown as Table 7. <Table 7> Software specification Operating System Language Specifications Windows 98 SE Visual C++ 6.0 In order to find matching point among more than two images, we acquire several images with different positions of cameras. First, we calculate and find interesting points on one image to save time. There are several different methods to find them, we adopted Förstner Interest Operator. This method is very commonly used to find interesting points on real images. The next step, we find matching points based on interesting points found. In this step, we used gradient-based image matching methods to find matching points. Figure 6 shows the detailed flow chart. 21 START Find Interest Point Calculate gradients of image set gx and gy Find normalized matrix N Find weight W Remove non-local maxima Find Matching Points Gaussian Filtering to remove noise Find evidence value e Find maximum value e Draw lines between matching points END <Figure 6> Flow chart of the system 22 4. Results 4.1 Result of Finding Interest Points Using Förstner Interest Operator Figure 7 shows the results of finding interesting points with the non-local maxima. The white points represent the interest points found. We use threshoding values shown on Equation (2.21) and (2.22). After we compute the first step of finding interest points, we apply the method of removing non-local maxima. The results were shown on Figure 9. The white points display the final interesting points. Figure 11 also shows interesting points without non-local maxima. 23 (a) (b) <Figure 7> Original Pair Images. (a) The left image (b) The right image 24 (a) (b) <Figure 8> The results of finding interesting points. The white points represent interesting points. (a) The left image (b) The right image 25 (a) (b) <Figure 9> The final results of finding interesting points of <Fig. 7> by removing non-local maxima. The white points represent interesting points. (a) The left image (b) The right image 26 (a) (b) <Figure 10> Original Pair Images. (a) The left image (b) The right image 27 (a) (b) <Figure 11> The final results of finding interesting points by removing non-local maxima. The white points represent interesting points. (a) The left image (b) The right image 28 4.2 Apply gradient-based Image Matching Method to Real Images After finding the interesting points on one image, we need to find matching points from other image. To find the best match for an isolated point, all we can do is to maximize Eδ at this point for all δ (displacement) under consideration (See Figure 12 and Figure 13). Doing for every point is not very efficient and produces a noisy and inconsistent displacement field. To deal with this problem, motion computation methods usually make the assumption that nearby points have similar displacements, based on the observation that motion in real scenes varies smoothly almost everywhere. Many point-oriented methods utilize the assumption of a smooth motion field after computing initial matches by smoothing the displacement field, often employing some confidence measure associated with each match to constrain the smoothing process. In contrast, our displacement-oriented method uses the assumption of a smooth motion field while finding the matches. The idea is that if a certain displacement δ aligns two matching objects, Eδ will have a strong positive response at the location of the match. By accumulating Eδ over a certain area, dominant motions can be detected. That is, only the correct displacement Eδ will yield support for a match over a larger area, thereby creating a maximum among all δ under consideration. The two dimensional stereo image matching results were shown at from figure 14 to figure 15 and three dimensional stereo image matching results were shown at from figure 16 to figure 24. 29 Gradient Based Evidence 15000 10000 5000 0 Evidence Value -5000 -10000 -15000 -20000 91 96 81 86 71 y S15 76 61 x 66 51 56 41 S29 46 31 36 16 21 26 1 6 11 -25000 S1 <Figure 12> Result of gradient based evidence(1) Gradient-Based Evidence 1000 500 0 Evidence Value -500 -1000 <Figure 13> Result of gradient based evidence(2) 30 97 85 91 67 73 61 S15 79 x 55 37 S29 43 49 31 1 7 13 19 25 -1500 S1 y <Figure 14> The 2D matching result. The lined white points represent matched pairs. 31 <Figure 15> The 2D matching result. The lined white points represent matched pairs. 32 (a) (b) <Figure 16> Original captured images. (a) The image of left view. (b) The image of right view. 33 <Figure 17> The 3D Image matching result of <Figure 16> with error points. The white points of left image represent interesting points. The white points of right image represent each matched points. 34 <Figure 18> The 3D Image matching result of <Figure 16> with eliminating error points. The white points of left image represent interesting points. The white points of right image represent each matched points. 35 (a) (b) <Figure 19> Original captured images. (a) The image of left view. (b) The image of right view. 36 <Figure 20> The 3D Image matching result of <Figure 19> with error points. The white points of left image represent interesting points. The white points of right image represent each matched points. 37 <Figure 21> The 3D Image matching result of <Figure 19> with eliminating error points. The white points of left image represent interesting points. The white points of right image represent each matched points. 38 (a) <Figure 22> Original captured images. (a) The image of left view. (b) The image of right view. 39 <Figure 23> The 3D Image matching result of <Figure 22> with error points. The white points of left image represent interesting points. The white points of right image represent each matched points 40 <Figure 24> The 3D Image matching result of <Figure 22> with eliminating error points. The white points of left image represent interesting points. The white points of right image represent each matched points 41 5. Conclusion In this thesis, we have presented the use of stereo vision for the application of image matching. The majority of the research is concerned with interesting points and gradient based image matching algorithm. It was shown (section 4.1) that the interesting points on images located at vertex of rectangles, edge and isolated points. It is because these kinds of points are good candidates for applying image matching algorithm, we can use them to next step. In section 4.2, the results of applying image matching algorithm which was proposed are shown. First, we find gradient evidence e in the searching window of right image. Figure 14 and figure 15 show the 2D image matching results. From figure 16 to figure 24, we illustrate the result of 3D image matching. By eliminating the wrong placed points, we can get best matching results. Table 8 shows the summary of the result of 2D and 3D image matching. We can conclude the image matching algorithm proposed is very efficient. <Table 8> The result of 2D and 3D image matching Figure No. Figure 14 Figure 15 Figure 18 Figure 21 Figure 24 Total Points 54 60 11 28 22 Wrong Placed Points 0 0 0 0 3 42 Correctness 100% 100% 100% 100% 86% References 1. 김희승, 영상인식 “영상처리 컴퓨터 비젼 페턴인식 신경만”, 1993, 생능 출판사, 서울 2. 박성한, “3 차원 정보를 얻기 위한 Stereo Vision System 에 관한 연구”, 한 양대학교, 1988 3. 박희주, “사진측량의 표정을 위한 스테레오 매칭 기술에 대한 연구”, 성 균관대학교, 1989 4. NHK 방송기술 연구소 화상연구소, “국제 테크노정보 연구소 편역, “C 언 어에 의한 화상처리 실무”, 1995, 국제 테크노 정보 연구소, 서울 5. 이성환, “패턴인식의 원리”, 1994, 홍릉과학출판사, 서울 6. 일본공업기술센터, “컴퓨터 화상처리 입문”, 1993, 기전 연구소 7. Craig A. Lindly, “C 이미지 프로세싱”, 1991, 동일 출판사, 서울 8. Brain Lee Curless, New Methods For Surface Reconstruction From Range Images, Stanford University, 1997 9. Clark F. Olson, Recognizing 3D Object from 2D Images Using the Probabilistic Peaking Effect, University of California at Berkeley 10. Dana H. Ballard, Rajesh P.N. Rao, Seeing behind occlusions, University of Rochester, 1994 11. Daniel Scharstein, View Synthesis using stereo vision, Cornell University, 1997 12. Dwayne Philips, Image Processing in C, 1994, R&D Technocal Books 13. Edward R. Dougherty, Digital Image Processing Methods, 1994, Marce Dekker 14. Faugeras, O.D., What can be seen in three dimensions with an uncalibrated stereo rig, In Processing of the Second European Conference on Compter Vision, pp. 563578, Santa Margherita Ligure, Italy, May 1992 15. Ganapathy, S., Decomposition of transformation matrices for robot vision, attern Recognition Letters2, pp. 401-412, 1984 16. Gideon P. Stein, Internal Camera Calibration using Rotation and Geometric Shapes, MIT, p. 7, February 1993 17. Jitendra Malik, Ruth Rosenholtz, Computing Local Surface Orientation and 43 Shape from Texture fir Curved Surfaces , University of California at Berkeley 18. Kiriakos N. Kutulakos, Charles R. Dyer, Recovering Shape by Purposive Viewpoint Adjustment, University of Wisconsin 19. Mohr, R. and Arbogast, E., It can be done without camera calibration, Pattern Recognition Letters 12. pp. 39-43, 1991 20. Morton Nadler, Eric P. Smith, Pattern Recognition Engineering, Willey Interscience, 1993 21. Rabindranath Dutta, Depth from motion and stereo : Parrel and sequential algorithms, robustness and lower bounds, University of Massachusetts, 1994 22. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, 1992, AddisonWesley 23. Ramesh Jain et al, Machine Vision, McGraw-Hill, 1995 24. Reg G. Willson, Steven A. Shafer, What is the Center of the image, Carnegie Mellon University, 1993 25. Stephen Gomory, Richard Wallace, Cursor Stereo, new York University 26. Steven Maxwell Seitz, Image-Based Transformation of Viewpoint and Scene Appearance, University of Wisconsin 27. Strat, T.M., Recovering the Camera Parameters from a Transformation Matrix in Proc. DARPA Image Understanding Workshop, pp. 264-271, Oct. 1984 44 국문요약 본 논문에서 스테레오 영상의 매칭을 위한 특이점 검출과 그레디언트 기 반의 영상 매칭 알고리즘을 제안하였다. 스테레오 영상의 매칭은 좌측 영 상의 각 점들이 우측영상의 각각의 유사한 점들로 어떻게 일치 시킬 수 있 는가로 요약할 수 있다. 좌측과 우측의 영상에서 각각의 점들의 유사도를 찾아 매칭점을 찾기 위 해서 우선 특이점을 찾아야 한다. 특이점이란 영상에 나타나 있는 물체의 가장자리나 혹은 독립적으로 떨어져 있는 점과 같은 주위의 배경들과는 차 이가 많은 점들을 생각할 수 있다. 이런 특이점을 찾는 방법으로 많이 사용되는 방법이 Förstner Interest Operator 가 있으며, 이것은 영상안의 가장자리, 원의 중심 그리고 배경과 많은 차이를 보이는 점들을 찾는데 효과적이다. 영상의 매칭점을 찾기 위해 우선 좌측 영상에서 특이점을 찾아낸뒤 우측 영상에서 이 점과 일치하는 점을 찾는다. 우선 고려할 것이 좌측 영상에서 찾아낸 특이점과 일치하는 우측 영상상의 점을 찾기 위해 우측 영상의 모 든 영역을 고려한다는 것은 상당히 비효율적이다. 따라서 본 논문에서는 우측영상에서 특정 범위로 검색 영역을 줄인 후 그레디언트 기반의 영상 매칭 알고리즘을 수행하였다. 비록 카메라를 통해 저장된 스테레오 영상을 이용한 매칭 기법에는 다른 물체에 의해 가려지는 현상이나 혹은 영상이 압축되는 현상이 나타나기는 하지만, 여기에서 제시된 방법을 통한 실제 영상의 실험 결과는 충분히 만 족할만한 수준이다. 주요어 : 스테레오비젼, 영상 매칭, 특이점 , 패턴 인식, 머신 비젼, 로봇 비 젼 45 감사의 글 벌써 대학원 생활에서 세 번째 가을을 맞고 있습니다. 두 번이면 충분 할 것을 저의 무능과 또한 시대적 도움(?)으로 일년이 더 길어졌습니다. 우선 아직 모자란 것이 많은 저를 언제나 뒤에서 보살펴 주셨고, 25 년간 저 혼자의 힘으로는 해결 할 수 없었던 많은 현실의 벽을 넘을 수 있도록 도와주셨던 부모님과 많은 충고를 해주셨던 하나뿐인 저의 누나에게 감사 드립니다. 또한 시대인으로 7 년간 많은 도움을 주셨던 스승이신 김희식 교수님께 감사 드립니다. 현재 건강이 조금 안 좋으신데 빠른 쾌유를 기원 합니다. 특히 여러 분야의 전공 분야뿐만 아니라 인생의 가르침을 짧지 않은 시간 동안 저에게 베풀어 주셨던 박선우 교수님, 최기상 교수님, 김규식 교수님, 김용철 교수님, 이준화 교수님 그리고 지금은 서울대에 계신 조남익 교수 님 등 제어계측공학과 교수님들게 감사 드립니다. 학부 4 년을 갓 마친 1997 년 정밀계측 연구실에서 새로운 생활을 시작 한 것은 저에게 많은 도전과 자신감을 주었습니다. 우선 아무것도 몰랐던 그 시절 프로그래밍에 많은 조언을 해주셨으며, 새로운 오락은 언제나 우 리 연구실이 장악한다는 믿음을 주셨던 영재형에게 감사 드립니다. 지금은 여자친구도 생기셔서 참 따뜻한 겨울을 보낼 것으로 생각됩니다. (좋겠다.) 또한 집들이도 아직 못하고 저의 옆에 앉아서 항상 저를 씹으셨던 평원형. 제가 원래 능력이 많은 것을 어쩌겠습니까? 부모님께서 잘 나아 주신 것을 요. 하지만 이제 평원형도 곧 장가를 가시니 좋으시겠습니다. 그리고 돌아 보니 반대로 저한테 매일 구박 받은 풍요속의 빈곤 응차니 한테도 감사의 말을 전하고 싶습니다. 또한 선배이자 저의 후배이신 조용한 현철형과 튼 튼하신 재황형께도 같이 생활한 기간은 얼마 되지 않았지만 별로 도움을 드리지 못해서 죄송합니다. 마지막으로 실험실의 새내기 영수기 또한 감사 의 말을 전하고 싶습니다. 물론 승영이형께도 감사합니다. 저의 대학 생활은 동아리 활동이 저에게는 전부였다고 해도 과언이 아 니었습니다. 특히 1993 년 입학과 동시에 아무 것도 모르는 1 학년 신입생 46 몇몇과 함께 만들어 지금까지도 계속 이어져 올 수 있었던 것은 어떻게 보 면 기적과도 같은 일이었을 것입니다. 그 때 만나서 평생 친구가 되어준 많은 선후배님들과 특히 93 동기들 재섭, 병오, 병렬, 용우, 우여사, 종순, 혜영, 진희에게 감사 드립니다. 아직 혼자인 친구들도 보이는데 곧 다들 짝 을 찾아서 청첩장을 돌릴 나이가 되어 가는군요. 혹시 관심 있으신 남녀분 들은 제게 연락을 주시면 주선을 해드리겠습니다. 올해는 영어공부라는 미명하에 6 개월간을 캐나다에서 보내면서 참 많 은 생각과 고민을 했던 한해였습니다. 특히 우리와 그들의 견해차를 많이 생각해 볼 수 있게 해준 Ken, Chyrl, Ian 에게 감사 드립니다. 또한 정말 열 성적이면서 또한 친구처럼 영어를 지도해주신 Anna 에게도 물론 감사 드립 니다. 그리고 캐나다에서 만났던 많은 친구들 특히 캐나다에서의 애인(?)으 로 많은 도움을 주었던 미선, 그리고 두 달간 룸메이트로 저를 열심히 먹 여 살려 주신 용철, 병철에게 진심으로 감사 드립니다. 또한 새집을 구하는 데 도움을 주셨던 종영형에게도 감사 드립니다. 마지막으로 지금은 영국에서 열심히 공부하고 있을 기훈이와 영원한 사 랑을 약속한 저의 여자친구 이쁜 영혜에게 감사와 사랑이 전하고 싶습니다. 1999 년 12 월 이 호 재 47
© Copyright 2025 ExpyDoc