26th Rencontres de Blois: Particle Physics and Cosmology PRESENT AND FUTURE DIRECTIONS IN THE OBSERVATION OF ULTRA-HIGH ENERGY COSMIC RAYS WITH THE PIERRE AUGER OBSERVATORY Antonio Bueno on behalf of the Pierre Auger Collaboration (University of Granada) 1 MOST ENERGETIC PARTICLES EVER OBSERVED ! ! ! ! Acceleration mechanisms Production sources ! ! Mass composition Ultra-High Energy Cosmic Rays: Unanswered questions 2 ! ! Fundamental interactions DETECTOR REQUISITES FOR AIR SHOWER MEASUREMENTS ABOVE 1 EeV • 2 Particle flux is extremely small (1 particle per km per century for 20 energies around 10 eV) • • Large areas required! Hybrid detector required for excellent measurement capabilities • Combination of ground array (particle detectors, 100% duty cycle) & optical devices (atmospheric fluorescence, 13% duty cycle) • Data-driven calibration of the ground array 3 PIERRE AUGER OBSERVATORY 4 sites, 24+3 telescopes Malargüe 350 S latitude ≈ 1400 m height ≈ 875 g/cm2 3000 km2 Infill/AMIGA 1660 water Cherenkov detectors In operation since 2004, completed in 2008 Triangular grid, side = 1.5 km 4 18 countries 94 institutions > 500 collaborators HYBRID DETECTION E= 72 EeV, θ=54o 81568 events Loma Amarilla 11940 events Coihueco 11172 events 25676 events Los Leones χ 2/Ndf = 2.7 / 4 CO LA LM dE/dX [PeV/(g/cm2)] Los Morados 140 Fluorescence detector profiles 120 100 80 Surface detector energy estimator 60 40 LL 20 SD Ecal 0 60 65 70 75 80 85 90 E [EeV] 500 dE = ∫ dX dX 1000 5 slant depth [g/cm2] SCIENTIFIC ACHIEVEMENTS 40 publications, 3260 citations, 81 citations/article UHECR Flux Suppression Spectrum & CR Phenomenology Hints of anisotropy for E>55 EeV Strongest bounds on large scale anisotropies Arrival Directions Restrictive limits 𝛾 on and ν fluxes Heavier composition above the ankle Composition Interdisciplinary Science Solar & Atmospheric Physics 6 p-air cross section measurement at √s = 57 TeV Fundamental Interactions Muon deficit in models of hadronic interactions ALL-PARTICLE SPECTRUM E [eV] 1018 1019 1020 10358 6317 3656 2201 1295 3242 2627 2015 1410 52202 29684 21413 13014 8624 5807 3984 2700 1701 1116 676 427 188 90 E1/2 3 Ea N19 - SD inclined 101 100 1 1037 S35 , S38 , N19 𝛾2 102 7 𝛾1 S35 / 15 VEM - SD 750 m S38 / 5 VEM - SD 1500 m 45 1038 103 10 1 10 2 h E3 J ( E) eV2 km 2 sr 1 yr 1 i Auger 2013 preliminary Data-driven calibration 1036 17.5 18.0 18.5 19.0 log10 ( E/eV) 19.5 ~130 000 events 7 20.0 20.5 1018 1019 EFD [eV] 1020 Flux suppression established! MASS COMPOSITION Auger 2013 preliminary σ(Xmax) [g/cm2] 〈Xmax〉 [g/cm2] Xmax on prot 850 800 750 600 18 10 19 10 Auger 2013 preliminary 70 proton 60 50 30 EPOS-LHC QGSJetII-04 Sibyll2.1 650 80 40 iron 700 Fit with empirical Gaisser-Hillas formula 20 0 20 10 E [eV] iron 10 8 18 10 19 10 20 10 E [eV] INTERPRETATION IN TERMS OF <LN A> A uger HighLights 33 RD I NTERNATIONAL C OSMIC R AY C ONFERENCE , R IO DE JANEIRO 2013 Auger 2013 preliminary 4 3.5 EPOS-LHC Auger 2013 preliminary 4 ⇥lnA 3.5 SIBYLL 2.1 ⇥lnA ⇥lnA 4 3.5 3 3 3 2.5 2.5 2.5 2 2 2 1.5 1.5 1.5 1 1 1 0.5 0.5 0.5 0 17.8 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 0 17.8 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 log (E/eV) 3 SIBYLL 2.1 Auger 2013 preliminary 4 3 EPOS-LHC Auger 2013 preliminary Proton 0 19.6 19.8 19.8 17.8 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 log (E/eV) 10 2 lnA 4 Auger 2013 preliminary 10 10 2 lnA 2 lnA log (E/eV) Iron QGSJet II-04 4 3 QGSJet II-04 Auger 2013 preliminary 2 2 2 1 1 1 0 0 0 -1 -1 -1 -2 17.8 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 -2 17.8 18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 -2 17.8 18 18.2 18.4 18.6 18.8 19 19.2 19.419.6 19.6 19.8 19.8 log (E/eV) 10 9 log (E/eV) 10 Pure beam log (E/eV) (E/eV) 10 HADRONIC INTERACTIONS Inclined showers (i.e. 𝜃>62o) Signal dominated by muons Muon counting from FADC for events with 𝜃∈[0o, 60o] at E= 1019 eV 2.4 Rµ/(E/1019 eV) 2.2 2 E - 14% 2.0 1.8 1.6 Fe EPO E + 14% S LHC Fe QG SJetII- 1.4 p EPOS LHC p QGSJ etII-04 1.2 1.8 1.0 1.6 Rµ 1.4 04 18.5 19 19.5 log (E/eV) 10 1.2 1 0.8 Systematic Uncert. QII-04 p QII-04 Mixed EPOS-LHC p EPOS-LHC Mixed 0.6 0.4 0.7 0.8 0.9 1 RE 1.1 1.2 Muon discrepancy between data and models of hadronic interactions 1.3 Scale factor to properly describe Auger data at E= 1019 eV 10 ADVANCING THE UNDERSTANDING OF UHECR GZK cut off or sources out of steam? Is th f Study ra er cti e at on a p fundamental th (~ ro interactions en e h 1 ton er igh 0% at the scale of gie es ) t s ~100 TeV ? Importance Search for of enhanced new physics: composition Proton LIV, sensitivity astronomy? extra dimensions, … Anisotropy Are there ultra-high energy studies photons and based on neutrinos? event-by-event mass estimation PLANNED DETECTOR UPGRADE TO OPEN A NEW FLOURISHING ERA OF UHECR MEASUREMENTS IMPORTANCE OF ENHANCED MUON DETECTION • • log10 (Nμmax) Composition mostly based on optical observation of Xmax 15% duty cycle Surface detector offers 100% duty cycle ➠Better mass discrimination capabilities by Improving separation of electromagnetic and muonic shower components! 1019 eV 𝜽=38o log10 (Nμmax) • 𝜽=38o 5x1019 eV 12 Xmax (g cm-2) DETECTOR UPGRADE PLANS • Take data until 2023 • It will triple our present statistics • MARTA LSD Improved electronics • • Layered Water RPC (under the WCD) Cherenkov Detector Enlarged dynamic range & faster sampling Scintillators ASCII On top of the WCD Enhanced muon detection capabilities few meters away from WCD 13 TOSCA ~1.5 m AMIGA-GRANDE Buried scintillator SUMMARY • The Pierre Auger Observatory has provided copious data of unprecedented quality and size. • Intensive campaign to improve detector capabilities: seeking definitive answers to open key questions. • Setting ground for a next-generation UHECR experiment (ten times bigger in size?). 14 BACK-UP Communica)on* antenna* GPS*antenna* FADC trace (40 MHz sampling) Electronics*enclosure* 40*MHz*FADC,*local*triggers,*10*Wat* BaBery* Solar*panels* Plas)c*tank*with* 12*ton*of*water* 3*PMTs*(9”)*for*Cherenkov* light*detec)on* 4 Fluorescence Detector Diaphragm Spherical mirror PMT camera Camera: 440 PMTs Shutter UV Filter (300-400 nm) Each telescope views 30×30o A shower event 17 Spherical mirrorR = 3.4 m SD SYSTEMATIC UNCERTAINTY OF ENERGY SCALE RED: NEW ! ! BLACK: OLD number of correlating events CORRELATION WITH AGNS OF VCV CATALOG 35 50 EeV 55 EeV 60 EeV 70 EeV 80 EeV 30 2σ 3σ 25 ) n o i t rela 20 15 10 o r t o Is 5 0 1σ 0 20 40 60 an h c 1% 2 ( py 80 r o c ce 100 120 number of events LARGE SCALE ANISOTROPY Equatorial dipole amplitude 10 0 Auger 750 m (East-West) Auger 1500 m (East-West) Auger 1500 m (Rayleigh) 99% CL upper limits (isotropy) 10-1 10-2 180 10-3 0.01 90 0.1 1 Energy [EeV] 0 10 100 Equatorial dipole amplitude Phase [deg] 10 0 270 180 0.01 Auger 750 m (East-West) Auger 1500 m (East-West) Auger 1500 m (Rayleigh) 0.1 1 Energy [EeV] 10 e nd ra -1 AGASA G 10 10 Gal E AD -2 C S KA -3 10 100 -4 10 Auger EAS-TOP C-G Xgal A S ICE-CUBE 14 10 15 10 16 10 17 10 Energy [eV] 18 10 19 10 log E ! Xmax 19.2 – 19.4 42.9 ± 5.1 g cm-2 19.2 – 19.3 40.4 ± 6.3 g cm-2 19.3 – 19.4 46.9 ± 7.0 g cm-2 ! ! ! ! Corresponding Pull:- ! (42.9 – 28.9)/√(4.52 + 5.12) = 2.1 sigma ! Drawing 71 events (2010) from 194 events (2013) give RMS < 28.9 g cm-2 at 3.1% ! Also there is a trials factor Auger 2013 preliminary Additional constraints to hadronic interaction models! CROSS SECTION MEASUREMENT Contaminations assumed for systematics: < 25% He < 0.5% γ Integral Flux E>E0 [km-2 sr -1 y-1] PHOTONS & NEUTRINOS SHDM SHDM’ TD Z-burst GZK upper limits 95% C.L. 1 Y Y Photons A -1 10 A Hyb 2011 TA 2011 10-2 Neutrinos Auger SD Single flavour (90% CL) -3 10 1019 1020 Energy[eV] E2 dN/dE [ GeV cm-2 s-1 sr-1 ] 1018 10-4 -5 10 ν limits Auger (6 yr) RICE (4.8 yr) ANITA-II (28.5 days) 10-6 Cosmogenic ν models p, Fermi-LAT bound [15] Fe, FRII & SFR evol. [16] p & mixed [2] Astrophysical sources AGN ν [1] Waxman-Bahcall [14] PRELIMINARY 10-7 10-8 10-9 10-10 1017 1018 Eν [eV] 1019 1020 1021
© Copyright 2024 ExpyDoc