Statistical Physics & Thermodynamics Prof. Dr. Haye Hinrichsen, Stefan Beyl, Laura Lauerbach, Lisa Morgan, Manuel Schrauth WS 14/15 SAMPLE SOLUTION Exercise 1 Binomial distribution (4P) The binomial distribution reads N k PN,p (k) = p (1 − p)N −k . k −1 (a) Use the relation Nk = Nk Nk−1 to derive a recursion relation for the non-centralized moments mn (N, p) = hk n iN,p of the binomial distribution. This recursion relation should have the following form: mn (N, p) = some function of m0 (N − 1, p), m1 (N − 1, p), . . . , mn−1 (N − 1, p) (b) Apply this recursion relation to compute the first four non-centralized moments m0 , . . . , m3 explicitly. (c) Compute the moment-generating function Mn,p (t) = hekt iN,p of the binomial distribution analytically (please provide a complete proof). (d) Compute the first three cumulants κ0 , . . . , κ3 explicitly from the cumulant-generating R function KN,p (t) = ln MN,p (t). You are encouraged to use Mathematica or similar computer algebra software. Good luck! Sample solution for exercise 1: (a) n mn (N, p) = hk iN,p N X N X N k N −k nN N − 1 = k p (1 − p) = k pk (1 − p)N −k k k−1 k k=0 k=1 N −1 X N − 1 k+1 = N (k + 1)n−1 p (1 − p)N −k−1 k n k=0 Now we expand (k + 1)n−1 = mn (N, p) = N p Pn−1 n−1 X q=0 = Np n−1 X q=0 q=0 n−1 q n−1 q k q to obtain NX −1 k=0 kq N −1 k p (1 − p)N −1−k k n−1 mq (N − 1, p) q (b) The zeroth moment is the norm which anchors the recursion: N X N k m0 (N, p) = p (1 − p)N −k = (p + 1 − p)N = 1 k k=0 The first moment is the mean: m1 (N, p) = N pm0 (N, p) = N p The second and the third moment can be computed similarly, giving: m2 (N, p) = N p (N p − p + 1) m3 (N, p) = N p N 2 p2 − 3N p2 + 3N p + 2p2 − 3p + 1 . (c) kt M (t; N, p) = he iN,p N X N k = p (1 − p)N −k e k k=0 N X N = (p et )k (1 − p)N −k = (pet + (1 − p))N . k kt k=0 (d) The Mathematica command Series[Log[M[t]], {t, 0, 3}] gives the output: 1 1 N pt + t2 N p − N p2 + t3 2N p3 − 3N p2 + N p + O t4 2 6 From this we can read off the cumulants κ0 = 0, κ1 = N p, κ2 = N p(1 − p), κ3 = N p(1 − p)(1 − 2p)
© Copyright 2024 ExpyDoc