Masking - Parenteral Drug Association

PDA: A Global
Association
New Control Strategies for Monitoring
of Endotoxin Masking in Biologics
Basel, 24.09.2014
Johannes Reich
Outline
1) Background
2) Endotoxin masking
3) Endotoxin demasking
4) Take home message
2
Background
LER = Low Endotoxin Recovery
(Endotoxin Masking)
Ref.: R. Mello, 2014
3
Background
NOE = Naturally Occurring Endotoxin
Ref.: R. Mello, 2014
4
Background
Ref.: R. Mello, 2014
5
Background
Clinically relevant?
- Safety database:
Too many “cofounding
variables” at this time
- LAL vs. RPT:
Contrary results
Ref.: R. Mello, 2014
6
Background
Requests from FDA for biologics:
… provide evidence that
the bulk drug substance
and
drug
product
formulation (containing
phosphate,
citrate,
polysorbate, etc.) does
not
interfere
with
endotoxin recovery of
the LAL test …
…
conduct
spiking
studies
on
the
undiluted
drug
substance and drug
product with known
amount of endotoxin
and simulate the worstcase hold conditions
to evaluate endotoxin
masking over time …
… based on the results
of the studies, modify
the endotoxin release
test and/or determine
the suitability of
alternative endotoxin
test methods …
7
Background
Endotoxin
•Endotoxins are breakdown
products of Gram-negative bacteria
•Chemically, endotoxins are
Lipopolysaccharides (LPS)
•Lipid A is the highly toxic unit
•Biological activity and
detectability varies with
aggregation state
Structure:
•
•
Conserved Lipid A and core
Heterogeneous O-antigen
Physical properties:
•
•
•
•
Ionic
Amphiphilic
Surface active
Self assembling
+X
+X
A c t i v i t y
8
Background
Loss of endotoxin detectability
(Low Endotoxin Recovery)
Endotoxin
masking
monitoring
100*[Endotoxin]H2O,t0/[Endotoxin]Sample,tx
Undiluted sample spiking
2.
Incubation (0.5h, 1d, 3d,…) at RT
3.
Sample preparation (dilution)
4.
Detection
Recovery [%]
1.
Recovery [%] =
100
90
80
70
60
50
40
30
20
10
0
0
4
40
Time
9
Masking
Common formulation components of MABs
Commercial Drug:
Active Ingredient:
Formulation:
Remicade
Infliximab
Phosphate, Polysorbate, Sucrose
Avastin
Bevacizumab
Phosphate, Polysorbate, Trehalose
Benlysta
Belimumab
Citrate, Polysorbate, Sucrose
Humira
Adalimumab
Phosphate, Citrate, Polysorbate, Mannitol, Sodiumchloride
Soliris
Eculizumab
Phosphate, Polysorbate, Sodiumchloride
Tysabri
Natalizumab
Phosphate, Polysorbate, Sodiumchloride
Mabthera
Rituximab
Citrate, Polysorbate, Sodiumchloride
Actemra
Tocilizumab
Phosphate, Polysorbate, Sucrose
Single components
Formulation
Multiple components
Recovery [%]
Formulation
Recovery [%]
Water
100
Citrate buffer + Polysorbate 80
<1
Citrate buffer, 10 mM
100
Citrate buffer + Polysorbate 20
<1
Phosphate buffer, 10 mM
75
Phosphate buffer + Polysorbate 80
<1
Polysorbate 80, 0,05 % (w/v)
88
Phosphate buffer + Polysorbate 20
<1
Polysorbate 20, 0,05 % (w/v)
84
10
Masking
Substantial doses of endotoxin “disappear”
50000
13.900
Recovery [EU/mL]
5000
500
65,0
50
5
1,25
0,5
0,05
<0,005
<0,005
<0,005
250
25
2,5
0,005
250000
25000
2500
Endotoxin Spike [EU/mL]
Material & Methods:
• Endotoxin: X EU/mL E.coli O55:B5
• Buffer: 10 mM Sodium citrate (pH 7,5)
•
•
•
Surfactant: 0,05 (w/v) % Polysorbate 20
Masking: 7 days, room temperature
Detection: EndoZyme®
11
Masking
Endotoxin recovery depends on formulation condition
Temperature (citrate + polysorbate)
100,00
4°C
80
RT
60
Recovery [%]
Recovery [%]
100
Surfactant (+citrate)
37°C
40
20
80,00
60,00
40,00
20,00
0,00
0,00001
0
0
4
time [hours]
Buffer (+ polysorbate)
10 mM Citrate RT
60%
10 mM Phosphate RT
20%
0%
0
100
200
300
0,01
0,1
1
Endotoxin: 100 EU/mL E.coli O55:B5; Buffer: 10 mM Sodium citrate (pH
7,5), Surfactant: X (w/v) % Polysorbate 20; Masking: 7 days, room
temperature; Detection: EndoZyme®
pH (buffer + polysorbate)
400
time [min]
Endotoxin: 100 EU/mL E.coli O55:B5; Buffer: 10 mM Sodium citrate, 10
mM Sodium phosphate, 5 mM EDTA, Surfactant: 0,05 (w/v) % Polysorbate
20; Masking: X min, room temperature; Detection: EndoZyme®
Recovery [%]
Recovery
Active
Pharmaceutical
Ingredient
5mM EDTA RT
80%
40%
0,001
Polysorbate (v/v) [%]]
Endotoxin: 100 EU/mL E.coli O55:B5; Buffer: 10 mM Sodium citrate (pH
7,5), Surfactant: 0.05 (w/v) % Polysorbate 20; Masking: X hours, 4°C,
room temperature, 37°C; Detection: EndoZyme®
100%
0,0001
40
200
180
160
140
120
100
80
60
40
20
0
Phosphate
Citrate
0
2
4
6
pH 8
10
12
14
Endotoxin: 100 EU/mL E.coli O55:B5; Buffer: 10 mM Sodium citrate, 10
mM Sodium phosphate, Surfactant: 0,05 (w/v) % Polysorbate 20; Masking:
7 days, room temperature; Detection: EndoZyme®
12
Masking
Heterogeneity of endotoxin preparations
Recovery [%]
100
10
1
NOE E.coli O55:B5
NOE E.coli O113
NOE E.cloacae
NOE E.cloacae (EDTA)
NOE B.capeci
LPS E.coli O55:B5
0
0
1
2
Materials & Methods:
• Endotoxin: 100 EU/mL Endotoxin
• Buffer system: 10 mM Sodium citrate (pH 7.5)
3
4
Incubation time [days]
•
•
•
5
6
7
Surfactant: 0.05 (w/v) % Polysorbate 20
Masking: 7 days, room temperature
Detection: EndoZyme®
13
Masking
Masking principle
Endotoxin masking is a two-step mechanism:
– Destabilization of LPS-aggregates (1)
– Change of LPS-aggregation state (2)
Factor C can not be activated
•Cooperative binding mechanism (Tan et al., 2000)
•Endotoxin-aggregates are the active state (Müller et al., 2004)
14
Masking
Summary
• Masking is depending on:
- time
- temperature
- pH
- buffer
- surfactant
- protein
• Different endotoxins show different masking kinetics
• High masking capacities in common formulations
• Endotoxin masking ≠ Test interference
15
Demasking
Challenge: Endotoxin re-arrangement into Limulus lysate active state
+
+
Energy
+
“de-masking”
Active LPS
Active LPS
masked LPS
Reaction pathway
16
Demasking
Polysorbate - Citrate
100 EU/mL
6 EU/mL
100%
Recovery [%]
Recovery [%]
100%
10%
10%
1%
1%
Positive
Control
1
2
Masked
3
7
time [days]
Positive
Control
1
Masked
De-Masked
2
3
time [days]
7
De-Masked
25 EU/mL
Recovery [%]
100%
Materials & Methods
• Endotoxin: E.coli O55:B5
• Buffer system: 10 mM Sodium citrate (pH 7.5)
• Surfactant: 0.05 (w/v) % Polysorbate 20
• Masking: 1 – 7 days, at 4 °C
• De-Masking: after 1- 7 days, 1 hour
• Detection: EndoLISA®
10%
1%
Positive
Control
1
Masked
2
3
time [days]
7
De-Masked
17
Demasking
Polyclonal Antibody
Phosphate + NaCl + Polysorbate 20
(e.g. formulation similar to Avastin ®)
2. Endotoxin in sample
3. Demasking
120
120
100
100
100
80
80
80
60
40
Recovery [%]
120
Recovery [%]
Recovery [%]
1. Endotoxin in H2O
60
40
60
40
20
20
20
0
0
H2O
Materials & Methods
• Endotoxin: 50 EU/mL E.coli O55:B5
• Buffer : 10 mM Sodium Phosphate(pH 7.5), 50 mM NaCl
• Surfactant: 0,05 (w/v) % Polysorbate 20
Buffer + PAK + Polysorbate
20
•
•
•
•
0
De-masking
Protein: 10 mg/mL bovine polyclonal IgG antibody (PAK)
Masking: 3 days at room temperature
De-Masking: 1 hour
Detection: EndoLISA®
18
Demasking
Polyclonal Antibody
Citrate + NaCl + Polysorbate 20
2. Endotoxin in sample
3. Demasking
120
120
100
100
100
80
60
40
Recovery [%]
120
Recovery [%]
Recovery [%]
1. Endotoxin in H2O
80
60
40
80
60
40
20
20
20
0
0
H2O
Materials & Methods
• Endotoxin: 50 EU/mL E.coli O55:B5
• Buffer : 10 mM Sodium Citrate (pH 7.5), 150 mM NaCl
• Surfactant: 0,05 (w/v) % Polysorbate 20
Buffer + PAK + Polysorbate
20
•
•
•
•
0
De-masking
Protein: 10 mg/mL bovine polyclonal IgG antibody (PAK)
Masking: 3 days at room temperature
De-Masking: 1 hour
Detection: EndoLISA®
19
Demasking
Contaminated
Monoclonal Antibody
(e.g.: formulation similar to Mabthera®)
10
Recovery [%]
Endotoxin [EU/mg]
12
8
6
4
2
2. Addition of Polysorbate
3. Demasking
200
200
150
Recovery [%]
1. Solvation of MAK33
in Citrate/NaCl
100
50
150
100
50
0
0
MAK33
Endotoxin contamination
source unknown
(“NOE”)
Materials & Methods
• Endotoxin: 11 EU/mg (naturally occurring endotoxin)
• Buffer : 25 mM Sodium Citrate(pH 7.5), 150 mM NaCl
• Surfactant: 0,07 (w/v) % Polysorbate 80
Buffer + MAK +
Polysorbate 80
0
De-masking
Masked endotoxin
Demasked endotoxin
contamination
contamination
•
•
•
•
Protein: 10 mg/mL mouse monoclonal antibody (MAK 33)
Masking: 3 days at room temperature
Demasking: 1 hour
Detection: EndoLISA®
20
Demasking
Concept
A.
B.
C.
D.
+
A.:
Destabilization of masking complex
B.:
Adsorption of surfactants
C.:
Modulation of adsorber
D.:
Disruption and reconfiguration of endotoxin
aggregates
LPS:
Polysorbate:
A:
B:
C:
D:
21
Demasking
Masking conditions need
their solution
Endotoxin masking
Formulation
API
Component:
Example:
Properties:
Chelator:
Citrate vs. EDTA
pH, denticity, etc.
Surfactant:
Polysorbate vs. Triton
HLB, CMC, etc.
API:
Antibody vs. Lysozyme
Charge, pI, hydrophobic
interfaces, etc.
Endotoxin demasking
Concept for demasking
 Destabilization of masking complex
Formulation
API
 Adsorption of surfactants
 Modulation of adsorber
 Disruption and reconfiguration of endotoxin aggregates
22
Take home message
•
Simulate worst-case conditions for hold time studies (FDA)
•
Endotoxin masking is depending on sample composition
•
Masking capacity of common formulations is high (10000 EU/mL)
•
Demasking is a sample preparation step
•
Specific demasking protocol for each product recommended
•
Masking is a reversible process!
•
Endotoxin masking is not irreversible, thus the endotoxin is
not detoxified
23
Acknowledgement
Universität Regensburg
Prof. Dr. H. Motschmann
Dr. H. Grallert
Dr. W. Mutter
M. Vogl
K. Heinzelmann
24
References
T. Nakamura, F. Tokunaga, T. Morita, S. Iwanaga, Interaction between
Lipopolysaccharide and Intracellular Serine Protease Zymogen, Factor C,
from Horseshoe Crab (Tachypleus tridentatus) Hemocytes, The Journal of
Biochemistry, 103, 370-374, 1988
M. Mueller, B. Lindner, S. Kusumoto, K. Fukase, A. Schromm, U. Seydel,
Aggregates Are the Biologically Active Units of Endotoxin, The Journal of
Biological Chemistry 279, 25, 26307-26313, 2004
N. Tan, M. NG, Y. Yau, P. Chong, B. Ho, J. Ding, Definition of endotoxin
binding sites in horseshoe crab Factor C recombinant sushi proteins and
neutralization of endotoxin by sushi peptides, The FASEB Journal, 14,
12,1801-1813, 2000
R. Mello, LER: An FDA Reviewer’s Perspective, PMF Bacterial Endotoxin
Summit, Philadelphia, 2014
25