Unit I Differential Equations-II 6.1 METHOD OF VARIATION OF PARAMETERS Consider a linear differential equation of second order d2y dy + a1 + a2 y = φ(x) ...(1) dx dx 2 where a1, a2 are functions of ‘x’. If the complimentary function of this equation is known then we can find the particular integral by using the method known as the method of variation of parameters. Suppose the complimentary function of the Eqn. (1) is C.F. = C1 y1 + C2 y2 where C1 and C2 are constants and y1 and y2 are the complementary solutions of Eqn. (1) The Eqn. (1) implies that y1′′+ a1 y1′ + a 2 y1 = 0 ...(2) y2′′ + a1 y2′ + a 2 y2 = 0 ...(3) We replace the arbitrary constants C1, C2 present in C.F. by functions of x, say A, B respectively, ∴ y = Ay1 + By2 ...(4) is the complete solution of the given equation. The procedure to determine A and B is as follows. From Eqn. (4) y′ = b Ay′ + By ′ g + b A′y + B′y g 1 2 1 2 ...(5) We shall choose A and B such that A′y1 + B′y2 = 0 ...(6) Thus Eqn. (5) becomes y′1 = Ay1′ + By 2′ ...(7) Differentiating Eqn. (7) w.r.t. ‘x’ again, we have y″ = b Ay ′′+ Ay′′ g + b A′y ′ + B′y′ g 1 2 280 1 2 ...(8) 281 DIFFERENTIAL EQUATIONS–II Thus, Eqn. (1) as a consequence of (4), (7) and (8) becomes A ′ y1′ + B ′ y 2′ = φ(x) ...(9) Let us consider equations (6) and (9) for solving A′y1 + B′ y 2 = 0 ...(6) A′y1′ + B′ y 2′ = φ(x) ...(9) Solving A′ and B′ by cross multiplication, we get A′ = bg Find A and B A = – Integrating, B = where W = y1 y1′ bg – y2 φ x y φx , B′ = 1 W W z z ...(10) y2 φ ( x) dx + k1 W y1 φ( x ) dx + k 2 W y2 = y1 y 2′ – y 2 y1′ y 2′ Substituting the expressions of A and B y = Ay1 + By2 is the complete solution. WORKED OUT EXAMPLES 1. Solve by the method of variation of parameters d2y + y = cosec x. dx 2 Solution. We have (D2 + 1) y = cosec x A.E. is m2 + 1 = 0 ⇒ m2 = – 1 ⇒ m = ± i Hence the C.F. is given by ∴ yc = C1 cos x + C2 sin x ...(1) y = A cos x + B sin x ...(2) be the complete solution of the given equation where A and B are to be found. The general solution is We have y = Ay1 + By2 y 1 = cos x and y2 = sin x y1′ = – sin x and y2′ = cos x W = y1 y2′ − y2 y1′ = cos x . cos x + sin x . sin x = cos2x + sin2x = 1 282 ENGINEERING MATHEMATICS—II A′ = bg – y2 φ x , W B′ = – sin x ⋅ cosec x , 1 1 , = – sin x ⋅ sin x = A′ = – 1, On integrating, we get A = B = bg y1 φ x W cos x ⋅ cosec x 1 1 B′ = cos x ⋅ sin x B′ = B′ = cot x zb g z –1 dx + C1 , i.e., A = – x + C1 cot x dx + C2 , i.e., B = log sin x + C2 Hence the general solution of the given Eqn. (2) is y = (– x + C1) cos x + (log sin x + C2) sin x i.e., y = C1 cos x + C2 sin x – x cos x + sin x log sin x. 2. Solve by the method of variation of parameters d2 y + 4y = 4 tan 2x. dx 2 Solution. We have (D2 + 4) y = 4 tan 2x A.E. is m2 + 4 = 0 where φ(x) = 4 tan 2x. i.e., i.e., m2 = – 4 m = ± 2i Hence the complementary function is given by yc = C1 cos 2x + C2 sin 2x y = A cos 2x + B sin 2x ...(1) be the complete solution of the given equation where A and B are to be found We have Then y 1 = cos 2x and y2 = sin 2x y1′ = – 2 sin 2x and y2′ = 2 cos 2x W = y1 y2′ − y2 y1′ = cos 2x . 2 cos 2x + 2 sin 2x . sin 2x = 2 (cos22x + sin22x) Also, = 2 φ(x) = 4 tan 2x A′ = bg – y2 φ x W and B′ = bg y1φ x W 283 DIFFERENTIAL EQUATIONS–II A′ = – sin 2 x ⋅ 4 tan 2 x – cos 2 x ⋅ 4 tan 2 x , B′ = 2 2 A′ = – 2 sin 2 2 x , B′ = 2 sin 2x cos 2 x On integrating, we get z z z zl sin 2 2 x dx , B = 2 sin 2 x dx cos 2 x A = –2 1 − cos2 2 x dx cos 2 x = –2 = −2 = –2 z q sec 2 x − cos 2 x dx RS 1 log bsec 2 x + tan 2 xg – 1 sin 2 xUV 2 T2 W A = – log (sec 2x + tan 2x) + sin 2x + C1 B = 2 sin 2 x dx b g 2 – cos 2 x + C2 2 B = – cos 2x + C2 Substituting these values of A and B in Eqn. (1), we get y = C1 cos 2x + C2 sin 2x – cos 2x log (sec 2x + tan 2x) which is the required general solution. = 3. Solve by the method of variation of parameters d2y + a 2 y = sec ax. dx 2 Solution. We have (D2 + a2) y = sec ax A.E. is ⇒ m = ± ai m2 + a2 = 0 C.F. = yc = C1 cos ax + C2 sin ax y = A cos ax + B sin ax ...(1) be the complete solution of the given equation where A and B are to be found. We have, y 1 = cos ax, y2 = sin ax y1′ = – a sin ax, y2′ = a cos ax W = y1 y2′ − y2 y1′ = a. Also, φ (x) = sec ax bg – y2 φ x , and W – sin ax ⋅ sec ax , A′ = a A′ = bg y1 φ x W cos ax ⋅ sec ax B′ = a B′ = 284 ENGINEERING MATHEMATICS—II A′ = – tan ax , a A = – A = 1 a z 1 a 1 dx + c2 B= a x + C2 B= a B′ = tan ax dx + C1 , b – log sec ax 2 g+C z 1 a Substituting these values of A and B in Eqn. (1), we get Thus, y = C1 cos ax + C2 sin ax – cos ax log (sec ax ) x sin ax + ⋅ a a2 4. Solve by the method of variation of parameters d2y dy +2 + 2y = e–x sec3x. 2 dx dx Solution. We have (D2 + 2D + 2) y = e–x sec3x A.E. is i.e., m2 + 2m + 2 = 0 m = –2± 4−8 2 m = –1±i ∴The complementary function (C.F.) is C.F. = yc = e–x(C1cos x + C2 sin x) ∴ y = C1 e–x cos x + C2 e–x sin x ⇒ y = A e–x cos x + B e–x sin x Thus –x y1 = e –x cos x and y2 = e ...(1) sin x y1′ = – e– x(sin x + cos x) y2′ = e–x (cos x – sin x) W = y1 y2′ – y2 y1′ = e–2x Also, φ(x) = e–x sec3x A′ = = bg – e – x sin x ⋅ e – x sec 3 x = – tan x sec 2 x e −2 x A = – A = – and B′ = bg – y2 φ x – y1 φ x , B′ = W W z tan x sec 2 x dx 1 tan 2 x + C1 2 bg y1 φ x W 285 DIFFERENTIAL EQUATIONS–II e – x cos x ⋅ e − x sec 3 x e −2 x 2 B′ = sec x = B = z sec 2 x dx B = tan x + C2 Substituting these values of A and B in Eqn. (1), we get y = = RS – 1 tan x + C UV e cos x + ltan x + C q e T2 W 1 e bC cos x + C sin x g + e sin x sec x 2 −x 2 1 −x –x 1 –x 2 sin x 2 2 This is general solution of the given solution. 5. Solve by the method of variation of parameters 2 d2y . –y = 2 1 + ex dx Solution. We have (D2 – 1) y = A.E. is i.e., Hence C.F. is 2 1 + ex m2 – 1 = 0 m2 = 1 ⇒m =±1 x yc = C1 e + C2 e–x y = Aex + Be–x ...(1) be the complete solution of the given equation where A and B are to be found We have y 1 = ex y2 = e–x and y1′ = ex y2′ = – e–x W = y1 y2′ − y2 y1′ also LM N φ(x) = 2 1 + ex = ex (– e–x) – e–x – e–x. ex – x = e0 = 1 = –1–1=–2 e–x + x = e0 = 1 – y2 φ x A′ = W 2 – e– x ⋅ 1 + ex e− x 1 = + = = x –2 1 + ex e 1+ ex bg d A′ = A = 1 e z x d1 + e i x d 1 e 1 + ex x i dx + C1 i OP Q 286 ENGINEERING MATHEMATICS—II Substitute Hence, ex = t, then ex dx = dt A = = z b z LMN t dx = dt t 1 g dt + C 1 1 1 O – + P dt + C , t 1+ tQ t 2 1 1+ t 1 2 using partial fractions. 1 – log t + log (1 + t ) + C1 t A = – e–x – x + log (1 + ex) + C1 = – B′ = bg y1 φ x W ex ⋅ = B = – z 2 1 + ex ex =– –2 1 + ex ex dx + C2 1 + ex B = – log (1 + ex) + C2 Substituting these values of A and B in eqn. (1), we get y = d i d i – e − x − x + log 1 + e x + C1 e x + – log 1 + e x + C2 e – x = C1 ex + C2 e–x – 1 – xex + ex log (1 + ex) – e–x log (1 + ex) = C1 ex + C2 e–x – 1 – xex + (ex – e–x) log (1 + ex) This is the complete solution of the given equation. 6. Solve by the method of variation of parameters y″ + y = tan x. Solution. We have (D2 + 1) y = tan x A.E. is m2 + 1 = 0 i.e., m2 = – 1 i.e., m = ±i C.F. is C.F. = yc = C1cos x + C2 sin x ∴ y = A cos x + B sin x be the complete solution of the given equation where A and B are to be found We have y 1 = cos x and y2 = sin x y1′ = – sin x y2′ = cos x W = y1 y2′ − y2 y1′ = cos x . cos x + sin x . sin x = cos2 x + sin2 x = 1 ...(1) 287 DIFFERENTIAL EQUATIONS–II φ (x) = tan x Also, bg – y2 φ x W – sin x ⋅ tan x = 1 A′ = A′ = – sin 2 x cos x A = – = – = – z z zb sin 2 x dx + C1 cos x 1 − cos2 x dx + C1 cos x g sec x − cos x dx + C1 A = – [log (sec x + tan x) – sin x] + C1 B′ = bg y1 φ x W cos x ⋅ tan x 1 B′ = sin x = B = z sin x dx + C2 B = – cos x + C2 Substitute these values of A and B in Eqn. (1), we get y = {– log (sec x + tan x) + sin x + C1} cos x + {– cos x + C2} sin x y = C1 cos x + C2 sin x – cos x log (sec x + tan x) This is the complete solution. 7. Solve by the method of variation of parameters d2y dy –2 + 2y = ex tan x. 2 dx dx Solution. We have (D2 – 2D + 2) y = ex tan x A.E. is m2 – 2m + 2 = 0 i.e., m = 2± 4−8 2 m = 1±i Therefore C.F. is yc = ex (C1 cos x + C2 sin x) ∴ y = ex (A cos x + B sin x) be the complete solution of the given equation ...(1) 288 ENGINEERING MATHEMATICS—II where A and B are to be found y 1 = ex cos x We have and y2 = ex sin x . y1′ = ex (cos x – sin x), y2′ = ex (sin x + cos x) W = y1 y2′ − y2 y1′ = e2x Also, φ(x)= ex tan x A′ = = A′ = bg – y2 φ x W – e x sin x ⋅ e x tan x e2 x – sin 2 x cos x A = – = – z zb sin 2 x dx = – cos x z g 1 − cos2 x dx cos x sec x − cos x dx A = – log (sec x + tan x) + sin x + C1 B′ = bg y1 ⋅ φ x W e x cos x ⋅ e x tan x e2 x B′ = sin x = B = z sin x dx + C2 B = – cos x + C2 Substituting these values of A and B in Eqn. (1), we get y = {– log (sec x + tan x) + sin x + C1}ex cos x + {– cos x + C2} ex sin x y = ex (C1 cos x + C2 sin x) – ex cos x log (sec x + tan x) This is the complete solution of the given equation. 8. Solve by the method of variation of parameters d2y dy –2 + y = ex log x. 2 dx dx Solution. We have (D2 – 2D + 1) y = ex log x A.E. is i.e., i.e., m2 – 2m + 1 = 0 (m – 1)2 = 0 m = 1, 1 Hence C.F. is yc = (C1 + C2 x) ex = C1 ex + C2 x ex ∴ y = Aex + Bxex ...(1) 289 DIFFERENTIAL EQUATIONS–II y 1 = ex and y2 = xex We have y1′ = ex, y2′ = xex + ex W = y1 y2′ − y2 y1′ = xe2x + e2x – xe2x = e2x Also φ(x) = ex log x A′ = bg – y2 φ x , W B′ = – xe x ⋅ e x log x e x ⋅ e x log x = e2 x e2 x A′ = – x . log x, bg – y1 φ x W = A= – z log x ⋅ x dx LM N x2 – 2 Integrating both these terms by parts, we get A = – log x ⋅ z B′ = log x OP Q x2 1 ⋅ dx + C1 2 x – x 2 log x x 2 + + C1 , A= 2 4 Substituting these values of A and B in Eqn. (1), we get Thus, 2 x 1 y= bC + C x g e x – x 2 e x log x x 2 e x + + x 2 log x e x – x 2 e x 2 4 = bC + C x g e x + x 2 log x ⋅ e x 3 2 x – x e 2 4 y= 2 1 1 b 2 g C1 + C2 x e x + y″ + 4y′ + 4y = 4 + b m2 + 4m + 4 (m + 2)2 m yc = = = = g x 2e x 2 log x – 3 . 4 e –2x ⋅ x Solution. We have (D2 + 4D + 4) y = 4 + C.F. is x 2 9. Solve by the method of variation of parameters A.E. is i.e., z e –2 x x 0 0 – 2, – 2 e–2x (C1 + C2 x) x⋅ 1 dx + C2 x B = x log x – x + C2 RS – x log x + x + C UV e + b x log x − x + C g xe 4 T 2 W 2 y= B = log x ⋅ x – 290 ENGINEERING MATHEMATICS—II y = C1e–2x + C2x e–2x ∴ y = Ae–2x + Bxe–2x ...(1) be the complete solution of the given equation where A and B are to be found We have y 1 = e–2x y 2 = xe–2x and y1′ = – 2e–2x y2′ = e–2x (1 – 2x) W = y1 y2′ − y2 y1′ = e–2x · e–2x (1 – 2x) + xe–2x · 2 · e–2x W = e–4x A′ = Also, bg – y2 φ x W FG H – xe −2 x ⋅ 4 + = e −2 x x e −4 x IJ K A = – z LM N d4 xe A = − 4x ⋅ 2x i bg F GH e –2 x ⋅ 4 + = F GH + 1 dx + C1 , OP Q e2 x e2x – x + C1 , − 4⋅ 2 4 A = – 2xe2x + e2x – x + C1 B = = z z FGH e –2 x x e –4 x 2x 4+ B′ = e A′ = – (4xe2x + 1) , On integrating, we get e –2 x x – y1 φ x B′ = W φ (x) = 4 + e –2 x x F GH e2 x 4 + 4e2 x + I JK I JK I JK e –2 x dx + C2 x IJ K 1 dx + C2 x B = 2e2x + log x + C2 Substituting these values of A and B in Eqn. (1), we get y = (– 2x e2x + e2x – x + C1) e–2x + (2e2x + log x + C2) xe–2x = (C1 + C2x) e–2x – 2x + 1 – xe–2x + 2x + xe–2x log x y = (C1 + C2x) e–2x + 1 + xe–2x(log x – 1). 10. Solve by the method of variation of parameters y″ + 2y′ + 2y = e–x sec3x. Solution. We have (D2 + 2D + 2) y = e–x sec3x A.E.. is m2 + 2m + 2 = 0 –2± 4−8 i.e., m = ∴ C.F. is yc = e–x ∴ = –1± i 2 (C1cos x + C2 sin x) y = Ae–x cos x + Be–x sin x ...(1) be the complete solution of the given equation where A and B are functions of x to be found 291 DIFFERENTIAL EQUATIONS–II We have y 1 = e–x cos x y 2 = e–x sin x and y1′ = – e–x (sin x + cos x) y2′ = e–x (cos x – sin x) W = y1 y2′ − y2 y1′ = e–2x Also, φ(x) = e–x sec3x A′ = bg – y2 φ x W −x B′ = −x –e A = – A = – z 3 B′ = tan x sec 2 x dx + C1 , tan 2 x + C1 , 2 B = Substituting these values of A and B in Eqn. (1), we get e z −x sec 2 x dx + C2 B = tan x + C2 F – tan x + C I e cos x + btan x + C g e sin x GH 2 JK e tan x sin x + e tan x sin x e bC cos x + C sin x g – 2 2 y = W cos x ⋅ e − x sec 3 x e– 2 x 2 B′ = sec x sin x ⋅ e sec x e– 2 x A′ = – tan x sec2x, A′ = bg – y1 φ x −x 1 –x 2 –x = –x –x 1 2 Thus, b g e – x tan x sin x 2 This is complete solution of the given equation. –x y = e C1 cos x + C2 sin x + EXERCISE 6.1 Solve the following equations by the method of variation of parameters: 1. d2y + y = tan2 x. dx 2 2. d2y + y = x sin x. dx 2 3. d2y dy – 5⋅ + 6 y = e4 x. 2 dx dx 4. d2y + 4 y = 4 sec2 2x. dx 2 5. (D2 + D) y = x cos x. b g Ans. y = C1 cos x + C2 sin x + sin x log sec x + tan x – 2 LMAns. y = C cos x + C sin x + 1 x sin x – 1 x cos xOP 2 4 N Q LMAns. y = C e + C e + 1 e OP 2 N Q Ans. y = C cos 2 x + C sin 2 x + sin 2 x log bsec 2 x + tan 2 x g − 1 LMAns. y = C + C e + 1 x bsin x − cos xg + cos x + 2 sin xOP 2 N Q 2 1 2 2x 1 1 2 –x 1 2 3x 2 4x 292 ENGINEERING MATHEMATICS—II LMAns. y = C cos ax + C sin ax – 1 x cos ax + 1 sin ax log sin ax OP a a N Q 6. (D2 + a2) y = cosec ax. 1 2 Ans. y = C1 cos x + C2 sin x + x cos x − sin x + sin x log sec x 7. (D2 + 1) y = sec x tan x. LMAns. y = bC + C xge N 8. (D2 + 2D + 1) y = e–x log x. 9. (D2 – 3D + 2) y = 2 1 –x 2 1 . 1 + e– x + g OPQ b 1 2 −x 2 log x − 3 x e 4 d i d Ans. y = C1e x + C2 e 2 x − xe x + e x log 1 + e x + e 2 x log 1 + e – x 10. (D2 – 6D + 9) y = e3x . x2 LMAns. y = bC N 13. (D2 + 1) y = 1 . 1+ sin x 1 1 ex . x 15. (D2 + 6D + 9) y = e –3 x . x5 + C2 x e 3 x + 2 3x 2 1 14. (D2 – 2D + 1) y = 6.2 g Ans. y = C1 + C2 x e 3 x – e 3 x log x g 18 d2 x − 4 x + 3i e OPQ Ans. y = C cos x + C sin x + sin x log bsec x + tan xg + logcos x − 1 Ans. y = C cos x + C sin x – x cos x + sin x log b1 + sin x g – 1 11. (D2 – 2D + 1) y = x2 e3x. 12. (D2 + 1) y = log cos x. b i 2 b g Ans. y = C1 + C2 x e x + xe x log x LMAns. y = bC N 1 g + C2 x e –3 x + 1 –3 –3 x x e 12 OP Q SOLUTION OF CAUCHY’S HOMOGENEOUS LINEAR EQUATION AND LENGENDRE’S LINEAR EQUATION A linear differential equation of the form xn n −1 n −2 dny y y dy n −1 d n− 2 d a x a x + ⋅ + + ⋅⋅⋅ + an −1 x ⋅ + an y = φ( x ) 2 1 dx dx n dx n −1 dx n − 2 ...(1) Where a1, a2, a3 ...an are constants and φ(x) is a function of x is called a homogeneous linear differential equation of order n. The equation can be transformed into an equation with constant coefficients by changing the independent variable x to z by using the substitution x = ez or z = log x Now z = log x ⇒ dz 1 = dx x 293 DIFFERENTIAL EQUATIONS–II dy dy dz = ⋅ = dx dz dx Consider ∴ x 1 dy ⋅ x dz dy dy = Dy = dx dz d . dz Differentiating w.r.t. ‘x’ we get, where D = x d 2 y dy + ⋅1 = dx 2 dx d2y dx 2 x i.e., d 2 y dz ⋅ dz 2 dx = d 2 y 1 dy ⋅ – dz 2 x dx = 1 d 2 y 1 dy ⋅ – ⋅ x dz 2 x dz i.e., x2 d 2 y dy d2y − = dz 2 dz dx 2 i.e., x2 d2y = (D2 – D) y = D (D – 1) y dx 2 Similarly, x3 d 3y = D (D – 1) (D – 2) y dx 3 ............................................................. ............................................................. xn dny = D (D – 1) ... (D – n + 1) y dx n n dy 2 d 2 y n d y ,x x ⋅⋅⋅⋅⋅ ⋅⋅⋅⋅ in Eqn. (1), it reduces to a linear dx dx 2 dx n differential equation with constant coefficient can be solved by the method used earlier. Also, an equation of the form, Substituting these values of x bax + bg n ⋅ b dny + a1 ax + b dx n g n −1 ⋅ d n −1 y + ... any = ( x ) dx n −1 ...(2) where a1, a2 .....an are constants and φ (x) is a function of x is called a homogeneous linear differential equation of order n. It is also called “Legendre’s linear differential equation”. This equation can be reduced to a linear differential equation with constant coefficients by using the substitution. ax + b = ez or z = log (ax + b) As above we can prove that bax + bg ⋅ dydx = a Dy 294 ENGINEERING MATHEMATICS—II bax + bg 2 bax + bg n d2y = a2 D (D – 1) y dx 2 ............................................................. ............................................................. ⋅ dny = an D (D – 1)(D – 2) ..... (D – n + 1) y dx n The reduced equation can be solved by using the methods of the previous section. ⋅ WORKED OUT EXAMPLES dy d2y − 2x − 4y = x4. 2 dx dx Solution. The given equation is 1. Solve x 2 d2y dy − 2x − 4 y = x4 2 dx dx Substitute x = ez or z = log x x2 So that x dy = Dy, dx x2 ...(1) d2y = D (D – 1) y dx 2 The given equation reduces to D (D – 1) y – 2Dy – 4y = (ez)4 [D (D – 1) – 2D – 4] y = e4z i.e., (D2 – 3D – 4) y = e4z ...(2) which is an equation with constant coefficients A.E. is i.e., ∴ C.F. is m2 – 3m – 4 = 0 (m – 4) (m + 1) = 0 m = 4, –1 C.F. = C1e4z + C2e–z P.I. = = 1 e4 z 3 4 D − D− 2 b4 g 1 2 bg –3 4 −4 = 1 ze 4 z 2D − 3 = 1 ze 4 z ( 2) 4 − 3 = 1 4z ze 5 bg e4 z D→ 4 Dr = 0 D→ 4 295 DIFFERENTIAL EQUATIONS–II ∴ The general solution of (2) is y = C.F. + P.I. y = C1 e4z + C2 e–z + 1 4z ze 5 Substituting ez = x or z = log x, we get –1 4 y = C1 x + C2 x + d i 1 log x x 4 5 C2 x 4 log x + 5 x 4 y = C1 x + is the general solution of the Eqn. (1). d2y dy − 3x + 4y = (x + 1)2. dx dx 2 Solution. The given equation is 2 2. Solve x d2y dy − 3x + 4 y = (x + 1)2 dx dx 2 Substituting x = ez or z = log x x2 x Then dy = Dy, dx x2 ...(1) d2y = D (D – 1) y dx 2 ∴ Eqn. (1) reduces to D (D – 1) y – 3 Dy + 4y = (ez + 1)2 i.e., (D2 – 4D + 4) y = e2z + 2ez + 1 which is a linear equation with constant coefficients. A.E. is i.e., ∴ m2 – 4m + 4 = 0 (m – 2)2 = 0 m = 2, 2 C.F. = (C1 + C2z) e2z P.I. = = b 1 D−2 e gd 2 e2 z + 2z i + 2e z + 1 2e z + ...(2) e0z b D – 2g b D – 2 g b D – 2 g 2 2 2 = P.I.1 + P.I.2 + P.I.3 P.I.1 = = = e2 z b D – 2g (D → 2) 2 e2 z b2 – 2 g ze 2 z 2 D–2 b (Dr = 0) 2 g (D → 2) 296 ENGINEERING MATHEMATICS—II = P.I.1 = P.I.2 = = ze 2 z 2 2−2 b g (Dr = 0) z2e2z 2 2e z b D − 2g 2 (D → 1) 2 (D → 0) 2e z b− 1g 2 P.I.2 = 2ez P.I.3 = = e0 z b D − 2g e0z 1 = 4 4 1 z 2 2z e + 2e z + 2 4 The general solution of Eqn. (2) is y = C.F. + P.I. P.I. = y = bC + C z g e y = bC + C log xg x 1 z 2 e2 z + 2e z + 2 4 ez = x or z = log x, we get Substituting 1 1 2z 2 2 + 2 + b g x 2 log x 2 2 + 2x + 1 4 is the general solution of the equation (1). d2y dy + 2x − 12y = x2 log x. 2 dx dx Solution. The given Eqn. is 2 3. Solve x d2y dy + 2x − 12 y = x2 log x 2 dx dx or Substituting x = ez x2 x dy = Dy, dx ...(1) z = log x, so that 2 and x d2y = D (D – 1) y dx 2 Then Eqn. (1) reduces to D (D – 1) y + 2 Dy – 12y = e2zz i.e., (D2 + D – 12) y = ze2z which is the Linear differential equation with constant coefficients. A.E. is m2 + m – 12 = 0 ...(2) 297 DIFFERENTIAL EQUATIONS–II i.e., (m + 4) (m – 3) = 0 ∴ m = – 4, 3 C.F. = C1e–4z + C2e3z P.I. = 1 ze 2 z D + D – 12 2 2z = e = e2z z b D + 2g + b D + 2g − 12 LM z OP N D + 5D − 6 Q (D → D + 2) 2 2 1 5 − z− 6 36 – 6 + 5D + D2 z z– 5 6 5 6 5 6 0 LM N 2z P.I. = e − OP Q LM N 5 – e2z z 5 − z+ = 6 36 6 6 ∴ General solution of Eqn. (2) is y = C.F. + P.I. FG H 5 e2 z z+ 6 6 z e = x or z = log x, we get − 4z + C2 e 3z – y = C1e Substituting –4 3 y = C1x + C2 x – FG H IJ K 5 x2 log x + 6 6 FG H 5 C1 x2 log x + + C2 x 3 – 4 6 6 x which is the general solution of Eqn. (1). y = OP Q IJ K IJ K d2y dy –x + y = 2 log x. 2 dx dx Solution. The given equation is 4. Solve x 2 x2 d2y dy –x +y 2 dx dx = 2 log x ...(1) 298 ENGINEERING MATHEMATICS—II x = ez Substitute x Then or z = log x, in Eqn. (1) 2 dy = Dy, dx and x2 d y = D (D – 1) y dx 2 Eqn. (1) reduces to, D (D – 1) y – Dy + y = 2z (D2 – 2D + 1) y = 2z i.e., ...(2) which is an equation with constant coefficients m2 – 2m + 1 = 0 A.E. is (m – 1)2 = 0 i.e., ∴ m = 1, 1 C.F. = (C1 + C2z) ez P.I. = 1 ⋅ 2z D − 2D + 1 2 2z + 4 1 – 2D + D2 2z 2z – 4 4 4 0 P.I. = 2z + 4 ∴ The general solution of Eqn. (2) is y = (C1 + C2z) ez + 2z + 4 Hence the general solution of Eqn. (1) is y = (C1 + C2 log x) · x + 2 log x + 4. d2y dy – 4x + 6y = cos (2 log x). 2 dx dx Solution. The given equation is 5. Solve x 2 d2 y dy – 4x + 6y = cos (2 log x) 2 dx dx Substituting x = ez or z = log x, we have x2 x ...(1) 2 dy 2 d y = Dy, and x = D (D – 1) y dx dx 2 ∴ Eqn. (1) reduces to D(D – 1)y – 4Dy + 6y = cos 2z i.e., A.E. is (D2 – 5D + 6) y = cos 2z 2 m – 5m + 6 = 0 ...(2) 299 DIFFERENTIAL EQUATIONS–II i.e., (m – 2) (m – 3) = 0 ∴ m = 2, 3 C.F. = C1e2z + C2e3z P.I. = 1 cos 2 z D − 5D + 6 D2 → – 22 2 = 1 cos 2 z – 2 − 5D + 6 = 1 cos 2 z – 5D + 2 = 2 + 5D 1 cos 2 z × 2 – 5D 2 + 5D = 2 cos 2 z − 10 sin 2 z 4 − 25D2 = 2 cos 2 z − 10 sin 2 z 104 2 b 1 cos 2z – 5 sin 2 z 52 The general solution of Eqn. (2) is y = C.F. + P.I. P.I. = 2z 3z = C1 e + C 2 e + D2 → – 22 g b 1 cos 2 z − 5 sin 2 z 52 g Hence the general solution is y = C1 x 2 + C2 x 3 + b b g b g 1 cos 2 log x – 5 sin 2 log x . 52 g d2y dy +x + 2y = x cos log x . 2 dx dx Solution. The given equation is 6. Solve x 2 d2y dy +x + 2 y = x cos (log x) 2 dx dx Substitute x = ez or z = log x, x2 x Then we have ...(1) dy d2y = Dy and x 2 = D (D – 1) y dx dx 2 ∴ Eqn. (1) reduces to D (D – 1) y + Dy + 2y = ez cos z i.e., A.E. is i.e., (D2 + 2) y = ez cos z 2 m + 2 = 0 m 2 = – 2; ...(2) 300 ENGINEERING MATHEMATICS—II ⇒ m 2 = 2i2 i.e., m = ± 2i C.F. = C1 cos 2 z + C2 sin 2 z P.I. = 1 e z cos z D +2 z = e = ez 1 b D + 1g 2 +2 cos z 1 cos z D + 2D + 3 (D2 → –12) 2 LM cos z OP N –1 + 2 D + 3Q L cos z OP e M N 2D + 2 Q e L cos z D − 1O M × P 2 N D + 1 D − 1Q e L – sin z − cos z O M D − 1 PQ 2 N e L – sin z − cos z O M – 2 PQ 2 N e bsin z + cos zg 4 = ez = (D → D + 1) 2 2 z z = z = (D2 → –12) 2 z = z = ∴ General solution of Eqn. (2) is y = C.F. + P.I. = C1 cos 2 z + C2 sin 2 z + b ez sin z + cos z 4 g ∴ The general solution of Eqn. (1), as y = C1 cos 2 log x + C2 sin 2 log x + b g b g b g x sin log x + cos log x . 4 sin log x d2y dy y = 5– · – +3 2 x2 dx x dx Solution. Multiplying throughout the equation by x, we get 7. Solve 2x b g sin log x d2y dy + 3x − y = 5x – 2 dx x dx z Substitute x = e or z = log x, in Eqn. (1) 2x2 ...(1) 301 DIFFERENTIAL EQUATIONS–II Then we obtain, {2D (D – 1) + 3D – 1} y = 5ez – e–z sin z i.e., A.E. is i.e., ∴ (2D2 + D – 1) y = 5ez – e–z sin z ...(2) 2 2m + m – 1 = 0 (m + 1) (2m – 1) = 0 1 2 m = – 1, FG 1 IJ z C.F. = C1e −2 + C2 e H 2 K P.I. = = d 1 5e z − e – z sin z 2D2 + D − 1 i 1 1 5e z – e – z sin z 2 2D + D − 1 2D + D – 1 2 = P.I.1 – P.I.2 5e z P.I.1 = 2 D2 + D – 1 = P.I.2 = (D → 1) 5e z 2 1 e – z sin z 2D + D − 1 −z = e = e−z = e−z = e−z (D → D – 1) 2 1 b g b g LM sin z OP N 2 D − 3D Q LM sin z OP MN 2 d–1 i − 3D PQ 2 2 D −1 + D −1 −1 2 sin z (D2 → – 12) 2 sin z – 2 − 3D −z = −e = – e−z −z = –e LM sin z OP N 3D + 2 Q LM sin z × 3D − 2 OP N 3D + 2 3D − 2 Q LM 3 cos z − 2 sin z OP N 9D − 4 Q 2 2 (D2 → –12) 302 ENGINEERING MATHEMATICS—II LM 3 cos z − 2 sin z OP N – 13 Q e b3cos z − 2 sin zg 13 = – e−z −z = b 5 z 1 −z e + e 3 cos z − 2 sin z 2 13 Complete solution of Eqn. (2) is P.I. = g y = C.F. + P.I. FG 1 IJ z y = C1e − z + C2 e H 2 K + b g b g b g 5 z 1 –z e + e 3 cos z − 2 sin z 2 13 ∴ The general solution of Eqn. (1) is y = 3 8. Solve x C1 + C2 x x+ FG H 5 1 3 cos log x – 2 sin log x . x+ 2 13x IJ K d3y d2y 1 + 2x 2 + 2y = 10 x + · 3 2 x dx dx Solution. The given equation FG H IJ K d 3y d2y 1 + 2x2 + 2 y = 10 x + 2 3 x dx dx Substitute x = ez or z = log x x3 x Hence, dy = Dy, dx x2 ...(1) d2y = D (D – 1) y dx 2 d 3y = D (D – 1)(D – 2) y dx 3 Eqn. (1) reduces to linear differential equation as x3 FG H z [D (D – 1)(D – 2) + 2D (D –1) + 2] y = 10 e + i.e., d z −z (D3 – D2 + 2) y = 10 e + e i 1 ez IJ K which is linear differential equation with constant coefficients A.E. is m3 – m2 + 2 = 0 i.e., (m + 1) (m2 – 2m + 2) = 0 Hence Therefore, m = – 1, 1 ± i C.F. = C1e–z + ez (C2 cos z + C3 sin z) P.I. = d 1 10 e z + e – z D3 – D2 + 2 i 303 DIFFERENTIAL EQUATIONS–II = 10 RS TD 1 1 ez + 3 ⋅ e– z 2 2 D − D +2 − D +2 3 = 10 [P.I.1 + P.I.2] P.I.1 = = P.I.2 = = = = P.I.2 = 1 ez D3 − D2 + 2 UV W D→1 ez 2 1 e– z 2 D −D +2 D → –1 3 1 b –1g − b– 1g 3 2 +2 e−z Dr = 0 1 ze − z 3D − 2 D D→– 1 2 ze – z b g 2 b g 3 –1 − 2 –1 ze – z 5 RS e + ze UV T2 5 W z P.I. = 10 –z Hence the complete solution is y = C.F. + P.I. b g Substituting ez = x or z = log x We get y = m b g LM e + ze OP N2 5 Q z = C1e – z + e z C2 cos z + C3 sin z + 10 −z b gr 2 log x C1 + x C2 cos log x + C3 sin log x + 5x + ⋅ x x b g 2 d3y dy 3 d y 2x – x2 + + xy = sin log x . 3 2 dx dx dx Solution. Dividing throughout the equation by ‘x’, we get 9. Solve x 4 b g 2 sin log x d 3y dy 2 d y 2 –x x + +y = 2 3 x dx dx dx Now substitute x = ez and z = log x x3 x 2 dy 2 d y = Dy, x = D (D – 1) y, dx dx 2 ...(1) 304 ENGINEERING MATHEMATICS—II x3 d 3y = D (D – 1)(D – 2) y dx 3 Eqn. (1) reduces to sin z ez [D (D – 1)(D – 2) + 2D (D –1) – D + 1] y = i.e., (D3 – D2 – D + 1) y = e–z sin z m3 – m2 – m + 1 = 0 A.E. is ⇒ m2 (m – 1) – 1 (m – 1) = 0 ⇒ (m2 – 1) (m – 1) = 0 ⇒ m2 – 1 = 0, ⇒ m–1=0 m = ± 1, 1 ⇒ m = – 1, + 1, + 1 C.F. = (C1 + C2 Z.) ez + C3 e–z and P.I. = –z Taking e 1 b D − 1g b D + 1g 2 e – z sin z (D → D – 1) outside and replacing 1 –z = e b D − 2g D –z = e dD –z = e 2 1 2 sin z i + 4 – 4D D sin z sin z D + 4D – 4D2 (D2 → –12) 3 sin z –z = e − D + 4D + 4 –z = e 4D – 3 sin z × 4D + 3 4D − 3 –z = e LM 4 cos z – 3sin z OP N 16D − 9 Q –z = e 4 cos z – 3 sin z – 25 = (D2 → –12) 2 b – 1 –z e 4 cos z − 3 sin z 25 g ∴ The complete solution is y = C.F. + P.I. = bC + C z g e 1 2 z + C3e – z + b 1 –z e 4 sin z − 3 cos z 25 g 305 DIFFERENTIAL EQUATIONS–II x = ez z = log x bC = b g 1 b g + C2 log x ⋅ x + b g b g 1 C3 4 sin log x – 3 cos log x . + 25x x g dy d2y 2 + 3 3x + 2 − 36y = 3x + 4x + 1. 2 dx dx Solution. The given equation is 10. Solve 3x + 2 b3x + 2g Substitute 2 ⋅ 2 ⋅ b g dy d2y + 3 3x + 2 − 36 y = 3x2 + 4x + 1 2 dx dx 3x + 2 = ez or z = log (3x + 2) (3 x + 2) So that b3x + 2g 2 ...(1) dy = 3Dy dx d2y = 32 D (D – 1) y dx 2 ez – 2 3 Substituting these values in Eqn. (1), we get Also, x = F e – 2I 3G H 3 JK z 3 D (D – 1) y + 3.3 Dy – 36y = 2 9 (D2 – 4) y = 2 F e – 2I + 1 GH 3 JK z +4 e2z − 1 3 d i 1 2z e −1 27 Which is a linear differential equation with constant coefficients i.e., Now the A.E. (D2 – 4) y = ...(2) m2 – 4 = 0 Whose roots are m2 = 4 m = ±2 C.F. = C1e2z + C2e– 2z and d i 1 1 2z P.I. = D 2 − 4 27 e − 1 LM e O 1 − e P MN b D − 2gbD + 2g D − 4 PQ 2z = 1 27 = 1 P.I.1 − P.I.2 27 P.I.1 = b oz 2 e2z D−2 D+2 gb g (D → 2) (Dr = 0) 306 ENGINEERING MATHEMATICS—II = ze 2 z 2D = ze 2 z 4 (D → 2) ze oz P.I.2 = D2 − 4 = P.I. = P.I. = (D → 0) 1 −4 LM 1 ze + 1 OP 4Q N4 1 d ze + 1i 108 1 27 2z 2z General solution is y = C.F. + P.I. –2 z 2z = C1e + C2 e + b y = C1 3x + 2 g 2 d i 1 ze 2 z + 1 108 b + C2 3 x + 2 g –2 + b 1 3x + 2 108 g 2 b g log 3x + 2 + 1 . EXERCISE 6.2 Solve the following equations: 2 1. x LMAns. = L cos F 3 log I + sin F 3 log I O + OP MN y x MMNC GH 2 xJK C GH 2 xJK PPQ x PQ LMAns. y = x bC + C log xg + x OP d y dy + 5x + 4y = x . 36 Q dx dx N LMAns. y = C x + C x – L x + x + 1 OOP d y dy – 20 y = (x + 1) . + 2x MN 14 9 20 PQPQ dx dx MN d2y + y = 3x2. dx 2 2 1 2 2 2. x 2 1 2 2 4. x 4 –5 2 1 2 2 d2y dy –x + 2 y = x sin (log x). 2 dx dx LMAns. y = x C cos blog xg + C sin blog xg – x log x cos blog xg OP 2 N Q LMAns. y = x C + C log x + x + x blog xg OP d y dy 1 + 3x + y = x+ . dx x dx 4 2 MN PQ 1 2 2 2 5. x 2 2 2 2 3. x 4 −2 4 2 −1 –1 1 2 2 307 DIFFERENTIAL EQUATIONS–II 2 6. x dy d2y + 4x + 2 y = ex. 2 dx dx Ans. y = C1 x –1 + C2 x −2 e x dy d2y –x + 4 y = cos (log x) + x sin (log x). 2 dx dx 1 x 3 cos log x − 2 sin log x + sin log x Ans. y = x C1 cos 3 log x + C2 sin 3 log x + 13 2 2 7. x LM N e 2 8. x j e b g j dy d2y – 3x + 5 y = x2 sin (log x). 2 dx dx LMAns. y = x N 2 b g b 2 11. x d2y dy + 5x + 4 y = x log x. 2 dx dx 3 12. x 2 d3y dy 2 d y 3 x + +x + 8 y = 65 cos (log x). 2 3 dx dx dx –2 1 15. –1 1 b g + x C2 cos 3 log x + C2 sin b2 x + 1g b g 2 e b2 x – 1g 2 b gOQP j b g b g x2 log x cos log x 2 3 log x + 8 cos log x – sin log x b g C1 cos log x + C2 sin log x – b gOP Q d2y dy + 1+ x + y = 4 cos log (1 + x). 2 dx dx Ans. y = C1 cos log 1 + x + C2 sin log 1 + x + 2 log 1 + x sin log 1 + x 2 ⋅ b g b g b g 3 b g d2y dy – 2 2x + 1 – 12 y = 16x. dx dx 2 LMAns. y = C b2 x + 1g N 3 1 16. –1 3 1 LMAns. y = x N 2 2 –2 d2y dy – 3x + 5 y = x2 sin (log x). 2 dx dx b1 + xg g LMAns. y = x bC + C log xg + C x + 1 x log x OP 4 N Q LMAns. y = x bC + C log xg + x FG log x – 2 IJ OP 9H 3K Q N 2 d 3y dy 3 d y 2 – x2 x + + xy = 1. 2 3 dx dx dx 14. b gOP Q x2 log x cos log x 2 Ans. y = C1 + C2 log x x + log x + 2 4 10. x 2 13. x b g C1 cos log x + C2 sin log x – 9. x2y″ – xy′ + y = log x. LMAns. y = C x N b gOPQ b g b g b g + C2 2 x − 1 –1 − b g b g OPQ b g 3 1 2x + 1 + 16 4 d 3y dy + 2x – 1 + 2 y = 0. 3 dx dx LMAns. y = 2 x − 1 LC + C 2 x − 1 b g MM b g MN N 1 2 3 2 + C2 2 x − 1 – 3 2 OPOP PQPQ 308 ENGINEERING MATHEMATICS—II 6.3 SOLUTION OF INITIAL AND BOUNDARY VALUE PROBLEMS The differential equation in which the conditions are specified at a single value of the independent variable say x = x0 is called an Initial Value Problem (IVP). If y = y(x), the initial conditions usually will be of the form. y(x0) = x0, y′(x0) = y1, ... y(n –1) (x0) = yn–1 The differential equation in which the conditions are specified for a given set of n values of the independent variables is called a Boundary Value Problem (BVP). If y = y(x) the n boundary conditions will be y (x1) = y1 , y(x2) = y2 , y(x3) = y3 ... y(xn) = yn . We can also have problems involving a system of d.e. (simultaneous de.s) with these type of conditions. WORKED OUT EXAMPLES 1. Solve the initial value problem d 2x dx +5 + 6x = 0, given that 2 dt dt bg dx 0 = 15. dt Solution. We have (D2 + 5D + 6) y = 0 x (0) = 0, A.E.. m2 + 5m + 6 = 0 (m + 2) (m + 3) = 0 ⇒ m = – 2, – 3 Therefore general solution is x = x (t) = C1e–2t + C2e–3t ...(1) This is the general solution of the given equation Now, consider, x (0) = 0 Eqn. (1), becomes x (0) = C1(1) + C2(1) C1 + C2 = 0 i.e., ...(2) Also we have from Eqn. (1), dx = – 2C1e–2t– 3C2e–3t dt Applying the conditions, bg dx 0 = 15 dt We obtain – 2C1 – 3C2 = 15 Solving equations (2) and (3), we get C1 = 15, C2 = – 15 thus x (t) = 15 (e–2t – e–3t). ...(3) 309 DIFFERENTIAL EQUATIONS–II d2y dy +4 + 3y = e–x subject to the conditions y(0) = y′(0). 2 dx dx Solution. We have (D2 + 4D + 3) y = e–x 2. Solve A.E. or m2 + 4m + 3 = 0 (m + 1) (m + 3) = 0 m = – 1, – 3 C.F. = C1e–x + C2e–3x P.I. = = = e–x D2 + 4 D + 3 D→– 1 e– x b –1g + 4b –1g + 3 Dr = 0 2 x e– x 2D + 4 D→– 1 x e– x 2 y = C.F. + P.I. = y = C1 e – x + C2 e –3 x + x e–x 2 ...(1) d dy 1 = – C1 e – x – 3 C2 e –3 x + – x e– x + e− x dx 2 Consider the conditions y(0) = 1 and y′(0) = 1 y′ = i ...(2) Eqn. (1) and (2) become, 1 = C1 + C2 and 1 = – C1 – 3 C2 + 1 . 2 By solving these equations we get, C1 = Thus y = 7 –3 and C2 = 4 4 7 – x 3 –3 x x e − x e − e + is the particular solution. 4 4 2 d2x dx +6 + 25x = 0. If the particle 2 dt dt is started at x = 0 with an initial velocity of 12 ft/sec to the left, determine x in terms of t. 3. A particle moves along the x-axis according to the law Solution. We have (D2 + 6D + 25) x = 0 From the given data, the initial conditions x = 0 when t = 0 and dx = – 12 when t = 0 dt 310 ENGINEERING MATHEMATICS—II A.E. m2 + 6m + 25 = 0 m = – 3 ± 4i ∴ x = x(t) = e–3t (C1 cos 4t + C2 sin 4t) –3t Now x′(t) = + 3e (– C1 sin 4t · 4 + 4 C2 cos 4t) –3t = – 12 e Consider ...(1) (C1 cos 4t – C2 sin 4t) ...(2) x (0) = 0 and x′(0) = – 12 Eqns. (1) and (2) become, 0 = C1 and – 12 = 4C2 – 3C1 ∴ C = 0 and C2 = – 3 x (t) = – 3e–3t sin 4t. EXERCISE 6.3 Solve the following initial value problems: 1. d2y dy 2 +6 + 9 y = 12e–3x = y (0) =0, = y ′ (0) 2 dx dx Ans. y = e –3x ⋅ x 4 LMAns. y = 1 bcos h x + cos x gOP 2 N Q LMAns. y = 1 d– 5 + e + 4 cos t – 2 sin t iOP 10 N Q d4y – y = 0; y (0) = 1 and y′(0) = 0 = y″(0) = y ′′′ ( 0). 2. dx 4 bg 3. y ′′′( t ) + y ′ t = e2t, y(0) = 0 = y′(0) = y ′′′ ( 0 ). 2t ADDITIONAL PROBLEMS (From Previous Years VTU Exams.) 1. Using the method of variation of parameters solve: Solution. We have (D2 + 1) y = d2y 1 +y = 2 1 + sin x dx 1 1 + sin x m2 + 1 = 0 and hence m = ± i C.F. = C1 cos x + C2 sin x y = A(x) cos x + B(x) sin x be the complete solution of the given d.e. where A(x) and B(x) are to be found. y2 = sin x We have y 1 = cos x A.E. is ∴ y1′ = – sin x W = y1 y2′ − y2 y1′ = 1 y2′ = cos x Also φ(x) = 1 1 + sin x ...(1) 311 DIFFERENTIAL EQUATIONS–II bg Now, A′ = – y2 φ x W i.e., A′ = – sin x 1 + sin x consider A′ = A = b and and g = –1 + – 1 + sin x − 1 z LMN 1 + sin x –1 + = – x+ = – x+ B′ = OP Q B′ = bg y1 φ x W cos x 1 + sin x 1 sin x 1 dx + k1 1 + sin x z zd 1 − sin x dx + k1 cos2 x i sec 2 x − sec x tan x dx + k1 A = – x + tan x – sec x + k1 Also, B′ = B = = b ...(2) g cos x 1 + sin x cos x 1 − sin x = = 2 1 + sin x cos x cos x z zb 1 − sin x dx + k 2 cos x g sec x − tan x dx + k 2 = log (sec x + tan x) + log (cos x) + k2 = log FG 1 + sin x IJ + log bcos x g + k H cos x K 2 = log (1 + sin x) – log (cos x) + log (cos x) + k2 B = log (1 + sin x) + k2 ...(3) Using Equations (2) and (3) in (1), we have y = [– x + tan x – sec x + k1] cos x + [log (1 + sin x) + k2] sin x i.e., y = k1 cos x + k2 sin x – x cos x + sin x – 1 + sin x log (1 + sin x) The term sin x can be neglected in view of them k2 sin x present in the solution Thus, y = k1 cos x + k2 sin x – (x cos x + 1) + sin x log (1 + sin x). 2. Solve by the method of variation of parameters d2y + 4y = 4 tan 2x. dx 2 Solution. Refer page no. 282. Example 2. 3. Solve d2y dy −2 + 2y = ex tan x using the method of variation of parameters 2 dx dx Solution. Refer page no. 287, Example 7. 312 ENGINEERING MATHEMATICS—II d2y + a 2 y = tan ax. 4. Solve 2 dx Solution. We have (D2 + a2) y = tan ax A.E. is m2 + a2 C.F. : be the complete solution We have y1 = 0 ⇒ m = ± ia = C1 cos ax + C2 sin ax of the d.e. where A and B are functions of x to be found. = cos ax y2 = sin ax y1′ = – a sin ax y2′ = a cos ax W = y1 y2′ − y2 y1′ = a φ(x) = tan ax Also bg – y2 φ x W B′ = y1 φ x W A′ = – 1 sin 2 ax a cos ax B′ = cos ax tan ax a A′ = 2 – 1 1 − cos ax a cos ax B′ = sin ax a d i zb A = y = Thus RS 1 Ta 2 z g 1 B = cos ax − sec ax dx + k1 , a 1 ⇒ A = 2 sin ax − log sec ax + tan ax + k1 a cosax + k2 B = – a2 Substituting these values in Eqn. (1), we get ⇒ bg A′ = b g sin ax dx + k 2 a UV W RS T sin ax − log sec ax + tan ax + k1 cos ax + – y = k1 cos ax + k 2 sin ax − b g UV W cos ax + k 2 sin ax a2 1 log sec ax + tan ax cos ax . a2 5. Using the method of variation of parameters find the solution of ex x A.E. is m2 – 2m + 1 = 0 ⇒ (m – 1)2 = 0 m = 1, 1 are the roots of A.E. ∴ C.F. = (C1 + C2 x) ex y = (A + Bx) ex where A = A(x), B = B(x) be the complete solution of the d.e. and we shall find A, B, we have y2 = x ex y1 = ex, d2y dy ex −2 +y= · 2 dx x dx Solution. We have (D2 + 2D + 1) y = ...(1) 313 DIFFERENTIAL EQUATIONS–II y1′ = ex ∴ y2′ = (x + 1) ex 2x W = y1 y2′ − y2 y1′ = e Also Further, we have A′ = bg – y2 φ x W – xe x ⋅ A′ = and ⇒ A = e x bg y1 φ x W ex ⋅ B′ = e2 x z B′ = ex x x ex x e2 x 1 B′ = x A′ = – 1 i.e., φ(x) = z 1 dx + k 2 x B = log x + k2. –1⋅ dx + k1 B = i.e., A = – x + k1 Using these values in Eqn. (1), we have y = (– x + k1) ex + (log x + k2) x ex i.e., y = (k1 + k2 x) ex + (log x – 1) x ex x The term – xe can be neglected in view of the term k2 xex present in the solution. Thus y = (k1 + k2 x) ex + x log x ex. 3 6. Solve x d3y d2y dy + 3x 2 +x + 8 y = 65 cos (log x). 2 3 dx dx dx Solution. Put Thus, we have t = log x or x = et xy′ = Dy, n 2 y ′′ = D (D – 1) y x 3 y ′′′ = D (D – 1) (D – 2) y where D = Hence, the given d.e. becomes [D (D – 1) (D – 2) + 3D (D – 1) + D + 8] y = 65 cos t i.e., = (D3 – 3D2 + 2D + 3D2 – 3D + D + 8) y = 65 cos t or (D3 + 8) y = 65 cos t ⇒ m3 – 23 = 0 A.E. : m3 + 8 = 0 (m + 2) (m2 – 2m + 4) = 0 m = – 2 and m2 – 2m + 4 = 0 By solving m2 – 2m + 4 = 0, we have m = 2 ± 4 − 16 2 ± 2i 3 = = 1± i 3 2 2 o t –2 t C.F. = C1e + e C2 cos 3t + C3 sin 3t t d dt 314 ENGINEERING MATHEMATICS—II Also P.I. = 65 cos t D3 + 8 P.I. = 65 cos t 65 8 + D cos t , = –D + 8 64 − D2 = D2 → –12 = –1 b g b 65 8 cos t − sin t g 65 P.I. = 8 cos t – sin t Complete solution : y = C.F. + P.I. with = { C1 + x C2 cos x D2 → –1 e t = log x, et = x j 3 log x + C3 sin e 3 log x j} + 8 cos (log x) – sin (log x). 2 7. Solve x d3y d 2 y dy 3x + + = x2 log x. dx 3 dx 2 dx Solution. Multiplying the equation by x, we have x3 put then d 3y d2y dy 3 x + +x = x3 log x 3 2 dx dx dx t = log x or ...(1) x = et x 2 y ′′ = D (D – 1) y xy′ = Dy, x 3 y ′′′ = D (D – 1) (D – 2) y Hence Eqn. (1) becomes [D (D – 1) (D – 2) + 3D (D – 1) + D] e3t . t i.e., D3 y = 0 A.E. : m 3 = 0 and hence m = 0, 0, 0 ∴ C.F. = (C1 + C2 t + C3 t2) eot C.F. = C1 + C2 t + C3 t2 P.I. = e 3t t t , = e 3t 3 2 D D−3 b 3t = e t D 3 + 9 D 2 + 27 D + 27 P.I.3 is found by division 27 + 27D + 9D2 + D3 g t 1 − 27 27 t t +1 –1 –1 0 D→D+3 315 DIFFERENTIAL EQUATIONS–II 3t P.I. = e ⋅ bt − 1g 27 The complete solution : y = C.F. + P.I. with t = log x and Thus {C + C log x + C blog xg } + 27x blog x − 1g . b g 2 b 1 2 3 g dy d2y − 2x + 3 − 12y = 6x. 2 dx dx Solution. Put t = log (2x + 3) Hence x = Also, we have and 3 2 y = 8. Solve 2x + 3 x = et b2 x + 3g y′ b2 x + 3g y ′′ 2 d or et = 2x + 3 i 1 t e −3 2 = 2Dy = 22 D (D – 1) y Hence, the given d.e. becomes d i 1 t e −3 2 i.e., 2 (2D2 – 2D – D – 6) y = 3 (et – 3) [4D (D – 1) – 2D – 12] y = 6 ⋅ i.e., A.E. is d i 3 t e −3 2 2m2 – 3m – 6 = 0 (2D2 – 3D – 6) y = m = ∴ ∴ Also 3 ± 9 + 48 3 ± 57 = 4 4 C.F. = C1 e C.F. = P.I. = 3t e4 d e3+ 57 j t 4 LM MNC e 1 + C2 e 57 t 4 e3+ 57 j t + C2 e 3e t 2 2 D 2 − 3D − 6 4 − 57 t 4 OP PQ − i 2 d2 D 3e t 9e ot − = 2 2 − 3− 6 2 0 − 0− 6 b 3e t 3 + 14 4 y = C.F. + P.I. t = log (2x + 3), et = 2x + 3 P.I. = − Complete solution with g b 9e ot 2 g i − 3D − 6 316 ENGINEERING MATHEMATICS—II 3t R| S| T y = e 4 C1 e Thus, 57 t 4 + C2 e – 57 t 4 where t = log (2x + 3) and et = 2x + 3. 9. Solve the initial value problem: U| 3 V| − 14 e W t + 3 4 dy d2y dy = 1 at x = 0 . +4 + 5y + 2cos hx = 0, given y = 0, 2 dx dx dx Solution. We have (D2 + 4D + 5) y = – 2 cos hx i.e., (D2 + 4D + 5) y = – (ex + e–x) A.E. is m2 + 4m + 5 = 0 – 4 ± 16 − 20 = –2±i 2 C.F. = e–2x (C1 cos x + C2 sin x) m = ∴ P.I. = – ex e– x − 2 D + 4D + 5 D + 4D + 5 2 = – ex e–x − 1+ 4 + 5 1+ 4 + 5 = – e x e– x − 10 2 LM e + e OP N10 2 Q x P.I. = – –x Complete solution: y = C.F. + P.I. g FGH b e x e– x –2 x + C1 cos x + C2 sin x − y = e 10 2 Now, we apply the given initial conditions, y = 0, I JK ...(i) dy = 1 at x = 0 dx From Eqn. (i), we get b g b dy = e –2 x – C1 sin x + C2 cos x – 2e –2 x C1 cos x + C2 sin x dx Using y = 0 at x = 0, Eqn. (i) becomes 0 = C1 – Using FG 1 + 1 IJ H 10 2 K or C1 = 3 5 dy = 1 at x = 0, Eqn. (ii) becomes dx 1 = C2 − 2C1 − 1 1 + 10 2 or C2 − 2 C1 = 3 5 g − e x e– x + 10 2 ...(ii) 317 DIFFERENTIAL EQUATIONS–II 3 9 , we get C2 = 5 5 Thus, the required particular solution from Eqn. (i) is given by Using C1 = y = g FGH b I JK 3 –2 x e x e– x · e cos x + 3 sin x − + 5 10 2 dy d2y dy = 2, y = 1 at x = 0. –4 + 5y = 0 . Subject to the conditions 2 dx dx dx Solution. We have (D2 – 4D + 5) y = 0 A.E. : m2 – 4m + 5 = 0 10. Solve m = 4 ± 16 − 20 4 ± 2i = = 2 ±i 2 2 ∴ ∴ C.F. = e2x (C1 cos x + C2 sin x) y = e2x (C1 cos x + C2 sin x) Also dy dx Consider = e2x (– C1 sin x + C2 cos x) + 2e2x (C1 cos x + C2 sin x) y = 1 1 = 1 (C1 + 0) Also by the condition Using Thus dy dx ...(1) ...(2) at x = 0, Eqn. (1) becomes ∴ C1 = 0 = 2 at x = 0, Eqn. (2) becomes 2 = C2 + 2C1 C1 = 1, we get C2 = 0 y = e2x (cos x) is the particular solution. 11. Solve the initial value problem bg d2y + y = sin (x + a) satisfying the condition y = (0) = 0, dx 2 y ′ 0 = 0. Solution. We have (D2 + 1) y = sin (x + a) A.E. : m2 + 1 = 0 and hence m = ± i ∴ C.F. = C1 cos x + C2 sin x P.I. = b sin x + a D2 + 1 The denominator becomes zero P.I. = x = P.I. = g D2 → – 12 = – 1 b g b g sin x + a D × 2D D x cos x + a 2 2 D2 b – x cos x + a 2 D2 → – 12 = – 1 g 318 ENGINEERING MATHEMATICS—II ∴ The complete solution is y = C.F. + P.I. b – x cos x + a 2 y = C1 cos x + C2 sin x b Using g ...(1) b cos x + a x sin x + a − 2 2 y ′ = – C1 sin x + C2 cos x Now, g g ...(2) y (0) = 0, y ′ (0) = 0 in Eqns. (1) and (2) respectively, we have cos a 2 Thus by using these values in Eqn. (1), we get the particular solution, C1 = 0 and C2 = y = b x cos x + a cos a sin x – 2 2 b g 1 cos a sin x − x cos x + a 2 12. Solve the initial value problem = g bg dx d2x dx 0 = 15 . +4 + 29x = 0, given x(0) = 0, 2 dt dt dt Solution. We have (D2 + 4D + 29) y = 0 A.E. : m2 + 4m + 29 = 0 – 4 ± 16 − 116 – 4 ± 10i = = – 2 ± 5i 2 2 x(t) = e–2t (C1 cos 5t + C2 sin 5t) m = ∴ Now, ...(1) dx = x′(t) = e–2t (– 5C1 sin 5t + 5C2 cos 5t) – 2e–2t (C1 cos 5t + C2 sin 5t) ...(2) dt us consider x(0) = 0 and x′(0) = 15 Let Equations (1) and (2) respectively becomes 0 = C1 and 15 = 5C2 – 2C1 ∴ C1 = 0 and C2 = 3 Thus, x(t) = 3e–2t sin 5t is the required particular solution. OBJECTIVE QUESTIONS 1. Match the following and find the correct alternative I. Cauchy’s equation II. Bernoulli’s equation (i) b x + 2g 2 (ii) x ⋅ 2 b g d2y dy + x+2 + y=5 2 dx dx d 3y d2y – x 2 = ex 3 dx dx 319 DIFFERENTIAL EQUATIONS–II III. Method of variation of parameters (iii) dy + xy = x 2 dx dy + xy = x 2 y 2 dx (v) y dx2 – x dy2 = 0 (vi) (D2 + a) y = tan x (iv) (vii) dy y − x = dx y + x (a) I (i), II (iii), III (vii) (b) I (ii), II (iii), III (v) (c) I (i), II (iv), III (vi) (d) I (ii), II (iv), III (vi) Ans. d 2. The homogeneous linear differential equation whose auxillary equation has roots 1, 1 and – 2 is (b) (D3 + 3D – 2) y = 0 (a) (D3 + D2 + 2D + 2) y = 0 (c) (D3 + 3D + 2) y = 0 3. The general solution of (a) y = C1 + C2 ex (x2 (d) (D + 1)2 (D – 2) y = 0. D2 (c) y = C1 + C2 x2 Ans. c – xD), y = 0 is (b) y = C1 + C2 x (d) y = C1 x + C2 x2. Ans. c 4. Every solution of y ′′ + ay ′ + by = 0, where a and b are constants approaches to zero as x → α provided. (a) a > 0, b > 0 (b) a > 0, b < 0 (c) c < 0, b < 0 (d) a < 0, b > 0. Ans. a 5. By the method of variation of parameters y ′′ + a 2 y = sec ax, the value of A is (a) b – log sec ax a 2 g+k 1 (b) – log sec ax + k1 a log sec ax + k1 (d) None. a3 6. By the method of variation of parameters, the value of W is called (a) The Demorgan’s function (b) Euler’s function (c) (c) Wronskian of the function (d) Robert’s function. Ans. a Ans. c 7. The method of variation of parameters, the formular for A′ is bg (a) y1φ x W (c) – y2 φ x W bg (b) bg y2 φ x W (d) None. Ans. c 320 ENGINEERING MATHEMATICS—II b g 8. The equation a0 (ax + b)2 y ′′ + a1 ax + b y ′ + a2 y = φ(x) is called (a) Legendre’s linear equation (b) Method of undetermined coefficients (c) Cauchy’s linear equation (d) Simultaneous equation Ans. a b)2 9. The D.E. (ax + y″ is 3 (a) a D (D – 1) (D – 2) y (c) D · Dy (b) a2 D (D – 1) y (d) None. Ans. b 10. The equation a0 y″ + a1 xy′ + a2y = φ(x) is called (a) Legendre’s linear equation (b) Cauchy’s linear equation (c) Simultaneous equation (d) Method of undetermined coefficients. x2 Ans. b 11. If t = log x, the value of x is (a) et (c) xet 12. The initial value problem, (a) C1 – C2 = 0 (c) C1 = 0 13. (b) ex (d) ext. Ans. a d 2x dx +5 + 6 x = 0 x(0) = 0 is 2 dt dt (b) C1 + C2 = 0 (d) C2 = 0 Ans. b d2y dy +4 + 3 y = e – x. Subject to the condition y (0) = 1 is dx dx 2 (b) C1 + C2 = 0 (a) C1 + C2 = 1 (c) C1 = 0 (d) C2 = – 1 Ans. a GGG
© Copyright 2025 ExpyDoc