1 / 62 4. Muons in data analysis Piet Verwilligen INFN Sezione di Bari Capita Selecta in HEP Vrije Universiteit Brussel April 9-10, 2014 2 / 62 Muon Identification I I Intro Why Muon identification? I Tools in hand & Identification definitions I Performance I Isolation 3 / 62 Why Muon identification? Riccardo Bellan — https://indico.cern.ch/event/210563/ 4 / 62 Why Muon identification? Global Muons at 100 GeV/c I Pion Fake rate: 3% (total) 1% (decay) I Kaon Fake rate: 5% (total) 1% (decay) Riccardo Bellan — https://indico.cern.ch/event/210563/ Tracker Muons at 100 GeV/c I Pion Fake rate: 3% (total) 0.75% (decay) I Kaon Fake rate: 3% (total) 0.75% (decay) 5 / 62 Tools available for identification Handles for Global Muon ID fake rejection I Inner track information: I I I I I I Calorimeter based information: I I energy deposition in ECAL and HCAL (compatible with MIP?) Muon system information: I I I I hits in pixel tracker hits in strip tracker quality of the track fit (χ2 /ndof) kink in track? impact parameters hits and segments in muon system penetration depth in muon system Stand-Alone muon quality Global Fit information: fit quality (χ2 /ndof) 6 / 62 Why Muon identification? Kaons vs Muons I Quality of Global Muon fit :: χ2 /ndof < 10 . . . but long tails . . . I Inner track :: dxy < 0.2 cm . . . room for optimization I Inner track :: nhits > 11 . . . could be made as function of η Riccardo Bellan — https://indico.cern.ch/event/210563/ 7 / 62 Why Muon identification? I Cuts used: I Global Muon fit: χ2 /ndof < 10 I Inner track :: dxy < 0.2 cm I Inner track :: nhits > 11 I Results: Muon ID efficiency high I I Kaon Fake Rate reduced with factor 10 0.3% vs 3% (before) at 100 GeV/c Riccardo Bellan — https://indico.cern.ch/event/210563/ 8 / 62 Why Muon identification? Riccardo Bellan — https://indico.cern.ch/event/210563/ 9 / 62 Muon Identification :: 4 definitions Soft Muon ID :: [muons from b-decays] I Tracker Muon Arbitrated (TMA) I TMOneStationTight: Tracker track matched with at least one muon segment in both X and Y coordinates (< 3σ) I number of strip tracker hits > 5 I number of pixel tracker hits > 1 I χ2 /ndof of inner track Fit < 1.8 I inner track transverse impact parameter dxy < 3 cm I inner track longitudinal impact parameter |dz | < 30 cm Tight Muon ID :: [muons from W ,Z ] I muon reconstructed as Global Muon I muon identified as Particle Flow Muon I χ2 /ndof of Global Muon Fit < 10 I at least 1 muon chamber hit included in the Global Fit I muon segments in at least 2 stations I inner track transverse impact parameter dxy < 0.2 cm I inner track longitudinal impact parameter |dz | < 0.5 cm I number of pixel tracker hits > 0 I number of strip tracker hits > 5 High Pt Muon ID :: [high pT muons] I pT and inner track defined by TuneP I Tight ID without PF ID & χ2 /ndof < 10 I ∆pT /pT < 0.3 Loose Muon ID :: [multiple muons] I PF Muon I TMA OR Global Muon 10 / 62 Particle Flow Muon Identification Slava Valuev — https://indico.cern.ch/event/110072/ 11 / 62 Particle Flow Muon Identification Slava Valuev — https://indico.cern.ch/event/110072/ 12 / 62 Particle Flow Muon Identification Cristina Botta — https://indico.cern.ch/event/185274/ 13 / 62 Muon Identification :: Overview Alicia Calderon — 14th ICATPP Conference Como 2013 14 / 62 Muon Identification :: Kinematics Alicia Calderon — 14th ICATPP Conference Como 2013 15 / 62 Muon Identification :: Kinematics :: Soft Muon Alicia Calderon — 14th ICATPP Conference Como 2013 16 / 62 Muon Identification :: Kinematics :: Tight Muon Alicia Calderon — 14th ICATPP Conference Como 2013 17 / 62 Muon Identification :: Kinematics :: Tight Muon Alicia Calderon — 14th ICATPP Conference Como 2013 17 / 62 Muon Identification :: Kinematics :: Tight Muon Alicia Calderon — 14th ICATPP Conference Como 2013 18 / 62 Muon Isolation :: Intro Alicia Calderon — 14th ICATPP Conference Como 2013 19 / 62 Particle Flow Muon Identification Slava Valuev — https://indico.cern.ch/event/110072/ 20 / 62 Particle Flow Muon Identification Slava Valuev — https://indico.cern.ch/event/110072/ 21 / 62 PU-corrections :: Effective Area correction Effective Area correction Pch had PFRelIso = no PU pT + Pneutr had ET + Pγ ET pTlepton I Estimate mean PU contribution in isolation cone of the lepton: I Calculate FastJet energy density for each jet: ρ I Median of ρ for each event is chosen I Effective area Aeff is ratio of slopes ρ/uncorrected iso neutrX had+γ neutrX had+γ ET = max ET − ρ · Aeff , 0 corr uncorr I cumbersome computations I Aeff calculated for different η intervals I Aeff not determined event-by-event, but averaged over data taking period 22 / 62 PU-corrections :: ∆β correction ∆β correction Pneutr had Pγ I Estimate: ET + PU ET PU I Open same cone in PU-vertex and collect Pch had charged energy from PU: PU PF energy fraction Charged particles can be identified to originate from a PU vertex, but this cannot be done for γ and neutral hadrons CMS preliminary, L = 1.6 fb-1 s = 8 TeV 0.9 0.8 0.7 0.6 0.5 49 GeV < pT < 114 GeV Tag & Probe method 0.4 Charged pile-up: Charged hadrons: Photons: Neutral hadrons: Electrons & Muons: Forward hadrons: Forward photons: 0.3 0.2 MC DATA 0.1 I Neutral energy ≈ half of charged energy Pch had I This estimate is ∆β ≈ 1 pT PU 2 Pch had PFRelIso = no PU pT + max 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 η P neutr had lepton pT ET + Pγ ET − ∆β, 0 23 / 62 PU-corrections :: the future Nahn Viet Tran & Phillip Coleman Harris — work in progress 24 / 62 PU-corrections :: the future Nahn Viet Tran & Phillip Coleman Harris — work in progress 25 / 62 PU-corrections :: the future Nahn Viet Tran & Phillip Coleman Harris — work in progress 26 / 62 Cosmic Ray Muon Rejection Cosmic Muons I generally not passing through the vertex region I hence not reconstructed I generally not in synch with LHC collisions I ∠(2 legs) α ≈ π Variables I Impact parameter I log10 (π − α) I muon time at vtx I ∆t muon legs Cosmic muons pointing to the vertex can be identified by searching for a tracker track back-to-back with the Reco muon: (α − π) 1 Remaining contribution of in-time Cosmic muons could be estimated from out-of-time cosmics 27 / 62 Muon Performance Measurements I How to measure properties of the Muon object in an unbiassed way? I Reco & Selection Efficiency I Fake Rates I Momentum Scale and Resolution 28 / 62 Events / GeV Resonances used as a source of pure muons 6 10 η ρ,ω φ J/ψ 5 10 ψ' Υ 104 Z 103 102 10 1 CMS s = 7 TeV Lint = 40 pb -1 1 10 102 Dimuon mass (GeV/c2 ) 29 / 62 Resonances used as a source of pure muons 30 / 62 Measuring Muon Efficiencies I Resonances reconstructed as pairs with: I I a tightly identified leg: tag-muon a loosely identified leg: probe-muon I Tightly identified tag and the constraints on tag-and-probe pair ensure origin of the probe to be a real muon I Efficiency to pass certain selection criteria is measured on probe-muons: I I pass critera ⇒ passing probes fail criteria ⇒ failing probes I Same (signal + background) lineshape is fit separately to passing and failing probes I Efficiency is calculated as the ratio of the signal yields in above fits I Efficiency is relative to the loose probe-identification: I ε(X ) = ε(X |Tracking) I Procedure is repeated in bins of probe-variables (pT , η, nvtx , . . . ) 31 / 62 Tracking Efficiency Efficiency factorization for Muons ε = ε(Tracking)·ε(RECO+ID|Tracking)·ε(ISO|RECO+ID)·ε(TRIG|ISO) I How well can the tracker reconstruct tracks? I Use Tag & Probe technique to estimate how often an inner track of a muon is not reconstructed I Tag :: Tight Muon I Probe :: Stand-Alone Muon I Check whether an inner track is associated to the Stand-Alone Muon (Probe) I Fortunately very high Tracking efficiency Tracking Efficiency (2011) 32 / 62 Muon ID Efficiency :: 7 TeV Alicia Calderon — 14th ICATPP Conference Como 2013 33 / 62 Muon ID Efficiency :: 8 TeV Alicia Calderon — 14th ICATPP Conference Como 2013 34 / 62 Muon ISO Efficiency Alicia Calderon — 14th ICATPP Conference Como 2013 35 / 62 Muon TRG Efficiency Alicia Calderon — 14th ICATPP Conference Como 2013 36 / 62 Double Muon Trigger :: Problem 2011 I A Double Muon Trigger selects two muons independently I MUO-10-04 studies show uncorrelated Leg efficiencies for dR > 0.5 (on J/Ψ) 2012 I Double Muon Trigger contaminated by two muons coming from different PV (increasing with PU) I Trigger Rate reduction obtained by requiring the z-coordinate of the Point of Closest Approach (PCA) of the two Muons: dz < 0.2 cm I Rate Red. of 40% at a price of ∼ 1 − 3% Eff. loss dZ filter applied to HLT Mu17 Mu8 and HLT Mu17 TkMu8 I Suboptimal dZ filter due to suboptimal (muon) tracking in HLT, causing worse tails in dz resolution and thus a lower efficiency of the dz filter (∼ 10% for HLT Mu17 Mu8, ∼ 5% for HLT Mu17 TkMu8) I runs 190456 - 199608 :: dZ filter suboptimal, then fixed during 2012C and good for runs 199698 – 208357 → overall Scale Factor provided 37 / 62 Double Muon Trigger :: Method Component Method I Efficiency of (H L OR S): ε(H L||S) = s1 + s2 − s1 s2 [Y+G] +z12 (h1 l2 + l1 h2 − h1 h2 ) [B+G] −z12 (s1 l2 + l1 s2 − s1 s2 ) [G] I Efficiency of (H L): I L = Double Mu: lower th I H = Double Mu: higher th I S = Single Mu ε(H L) = z12 (h1 l2 + l1 h2 − h1 h2 ) Muon Leg Efficiencies (best Z mass) [B+G] dZ Filter Efficiency CMS Preliminary, s = 8 TeV, 11.22 fb-1 0.6 0.4 0.2 20 < pT < ∞ GeV/c Data 2012 CMS Preliminary, s = 8 TeV Simulation CMSSW 53X Run C,D: 199698 --- 207898 [11.22 fb-1] MC Truth 1.045 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 1.2 1.4 1.6 1.8 2 2.2 2.4 1.015 0.985 0.955 0 1 2 2.2 2.4 Muon |η| [-] 1 10 < pT(µ 1) < 20 GeV/c 2.4 2.2 +1.00 ± +0.02 +0.86 ± +0.09 +1.00 ± +0.10 -nan ± +0.00 +1.00 ± +0.00 +1.00 ± +0.02 +0.95 ± +0.02 +1.00 ± +0.23 +1.00 ± +0.08 +1.00 ± +0.12 +0.96 ± +0.04 +1.00 ± +0.07 1 2 µ |η| [-] HLT_Mu17TkMu8_TkMu8Leg Efficiency Data/MC HLT_Mu17TkMu8_Mu17Leg Efficiency Data/MC Run2012C,D: 199698 ≤ runs ≤ 207898 1 0.8 0.8 2 1.8 0.6 1.6 1.4 0.4 1.2 0.2 Data 2012 CMSSW 53X Run C,D: 199698 --- 207898 [11.22 fb-1] MC Truth 0 0.8 CMS Preliminary, s = 8 TeV Simulation 1.045 1 10 < pT < 20 GeV/c 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 1.2 1.4 1.6 1.8 2 2.2 0.6 0.4 0 +1.00 ± +0.09 +0.97 ± +0.03 +1.00 ± +0.00 0.2 0.985 0.955 +1.00 ± +0.07 2.4 1.015 1 2 2.2 2.4 Muon |η| [-] 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 µ |η| [-] 1 10-1 38 / 62 Run2012ABCD :: Mu17Mu8 Eff :: [DATA][Loose ID][±STAT] ∆R < 0.1 ∆R < 0.3 CMS Preliminary, s = 8 TeV, 18.774 fb-1 Run2012ABCD: 190456 ≤ runs ≤ 208357 20 < p (µ ) < ∞ GeV/c T 2 10 < pT(µ 1) < 20 GeV/c 2.4 Mu17_Mu8 Eff ± STAT Loose Muon ID 2 2.2 1 2 0.826 ± 0.011 1.8 0.9 0.731 ± 0.023 20 < pT(µ 2) < ∞ GeV/c 10 < pT(µ 1) < 20 GeV/c 2.2 0.8 0.9 0.736 ± 0.024 0.833 ± 0.012 0.8 1.6 1.4 0.7 1.4 0.7 1.2 0.6 1.2 0.6 1 0.5 0.8 0.4 0.811 ± 0.009 0.884 ± 0.016 0.6 1 0.5 0.8 0.840 ± 0.025 0.6 0.3 0.4 0.4 0.830 ± 0.011 0.3 0.4 0.2 0.2 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 µ |η| 0.1 0 0 0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 1 0.774 ± 0.020 2.2 2 Mu17_Mu8 Eff ± STAT Loose Muon ID 1 0.9 0.1 20 < pT(µ 2) < ∞ GeV/c 20 < pT(µ 1) < ∞ GeV/c 0.780 ± 0.024 2.2 2 1.1 1 0.9 1.8 1.8 0.763 ± 0.008 0.754 ± 0.007 1.6 0.8 0.776 ± 0.004 0.790 ± 0.008 0.833 ± 0.015 0.805 ± 0.007 0.807 ± 0.015 0.863 ± 0.005 0.846 ± 0.003 0.862 ± 0.005 1.6 0.6 0.6 1.2 1.2 1 0.782 ± 0.014 0.779 ± 0.004 0.816 ± 0.012 0.8 0.5 0.4 0.8 0.7 0.7 1.4 1.4 1 0.8 0.5 0.4 0.6 0.6 0.843 ± 0.005 0.902 ± 0.002 0.4 0.826 ± 0.003 0.845 ± 0.005 0.3 0.914 ± 0.003 0.4 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 µ |η| [-] 1 0.1 0 0 0.3 0.2 0.2 0.2 0.2 0 0 CMS Preliminary, s = 8 TeV, 18.774 fb-1 Run2012ABCD: 190456 ≤ runs ≤ 208357 1.1 2.4 2 20 < p (µ ) < ∞ GeV/c T 2 20 < pT(µ 1) < ∞ GeV/c 2.2 2.4 µ |η| 1 µ |η| [-] CMS Preliminary, s = 8 TeV, 18.774 fb-1 Run2012ABCD: 190456 ≤ runs ≤ 208357 2.4 2 µ |η| [-] Mu17_Mu8 Eff ± STAT Loose Muon ID 20 < pT (µ1 ) < ∞ GeV/c 1.1 1 2 1.8 1.6 CMS Preliminary, s = 8 TeV, 18.774 fb-1 Run2012ABCD: 190456 ≤ runs ≤ 208357 1.1 2.4 µ |η| 2 µ |η| 10 < pT (µ1 ) < 20 GeV/c Mu17_Mu8 Eff ± STAT Loose Muon ID 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 µ |η| [-] 1 0.1 39 / 62 Run2012ABCD :: Mu17TkMu8 Eff :: [DATA][Loose ID][±STAT] ∆R < 0.1 ∆R < 0.3 CMS Preliminary, s = 8 TeV, 18.774 fb-1 Run2012ABCD: 190456 ≤ runs ≤ 208357 20 < p (µ ) < ∞ GeV/c T 2 10 < pT(µ 1) < 20 GeV/c 2.4 Mu17_TkMu8 Eff ± STAT Loose Muon ID 2 2.2 1 2 0.9 0.822 ± 0.023 0.854 ± 0.017 1.8 20 < pT(µ 2) < ∞ GeV/c 10 < pT(µ 1) < 20 GeV/c 2.2 0.8 0.9 0.826 ± 0.022 0.851 ± 0.016 0.8 1.6 1.4 0.7 1.4 0.7 1.2 0.6 1.2 0.6 1 0.5 0.8 0.4 0.854 ± 0.012 0.912 ± 0.016 0.6 1 0.5 0.8 0.913 ± 0.001 0.6 0.3 0.4 0.4 0.857 ± 0.012 0.3 0.4 0.2 0.2 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 µ |η| 0.1 0 0 0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 1 0.830 ± 0.030 2.2 2 Mu17_TkMu8 Eff ± STAT Loose Muon ID 1 0.9 0.1 20 < pT(µ 2) < ∞ GeV/c 20 < pT(µ 1) < ∞ GeV/c 0.829 ± 0.029 2.2 2 1.1 1 0.9 1.8 1.8 0.835 ± 0.009 0.866 ± 0.008 1.6 0.8 0.860 ± 0.008 0.830 ± 0.009 0.929 ± 0.012 0.901 ± 0.006 0.869 ± 0.017 0.925 ± 0.004 0.893 ± 0.003 0.882 ± 0.007 1.6 0.6 0.6 1.2 1.2 1 0.871 ± 0.017 0.904 ± 0.003 0.945 ± 0.009 0.8 0.5 0.4 0.8 0.7 0.7 1.4 1.4 1 0.8 0.5 0.4 0.6 0.6 0.929 ± 0.004 0.927 ± 0.003 0.4 0.895 ± 0.003 0.886 ± 0.004 0.3 0.923 ± 0.003 0.4 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 µ |η| [-] 1 0.1 0 0 0.3 0.2 0.2 0.2 0.2 0 0 CMS Preliminary, s = 8 TeV, 18.774 fb-1 Run2012ABCD: 190456 ≤ runs ≤ 208357 1.1 2.4 2 20 < p (µ ) < ∞ GeV/c T 2 20 < pT(µ 1) < ∞ GeV/c 2.2 2.4 µ |η| 1 µ |η| [-] CMS Preliminary, s = 8 TeV, 18.774 fb-1 Run2012ABCD: 190456 ≤ runs ≤ 208357 2.4 2 µ |η| [-] Mu17_TkMu8 Eff ± STAT Loose Muon ID 20 < pT (µ1 ) < ∞ GeV/c 1.1 1 2 1.8 1.6 CMS Preliminary, s = 8 TeV, 18.774 fb-1 Run2012ABCD: 190456 ≤ runs ≤ 208357 1.1 2.4 µ |η| 2 µ |η| 10 < pT (µ1 ) < 20 GeV/c Mu17_TkMu8 Eff ± STAT Loose Muon ID 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 µ |η| [-] 1 0.1 40 / 62 Fake Rate Measurement Alicia Calderon — 14th ICATPP Conference Como 2013 Pion misidentification from Ks0 → π + π − selection Alicia Calderon — 14th ICATPP Conference Como 2013 41 / 62 Pion misidentification from Ks0 → π + π − selection 42 / 62 B → J/ΨK selection 43 / 62 Kaon misidentification from B → J/ΨK selection 44 / 62 45 / 62 Muon Momentum Scale Alicia Calderon — 14th ICATPP Conference Como 2013 46 / 62 Muon Momentum Scale Alicia Calderon — 14th ICATPP Conference Como 2013 47 / 62 Analysis Examples I W (µν) & Z (µµ) I I Bs (µµ) W 0 (µν) & Z 0 (µµ) I H(ZZ → 4µ) 48 / 62 Alicia Calderon — 14th ICATPP Conference Como 2013 49 / 62 Alicia Calderon — 14th ICATPP Conference Como 2013 50 / 62 Alicia Calderon — 14th ICATPP Conference Como 2013 51 / 62 Alicia Calderon — 14th ICATPP Conference Como 2013 52 / 62 Alicia Calderon — 14th ICATPP Conference Como 2013 H(ZZ → 4`) :: Event Selection 53 / 62 leptons I pT (µ) > 5 GeV/c, η µ < 2.4 pT (e) > 7 GeV/c, η e < 2.5 I | σIPIP | < 4.0 PF Irel < 0.4 signal Narrow resonance O(2 − 4 GeV/c 2 ) background I Z + X (reducible) I I I I Z + jets Z + bb estimated from data ZZ (ireducible) I estimated from MC At the time of Discovery I 54 / 62 450 CMS Simulation, s=8 TeV FSR applied 300 250 s = 7 (8) TeV, L = 5.1 (19.6) fb-1 CMS preliminary FSR not applied 80 Events affected by FSR MH = 126 GeV 40 35 100 400 350 120 / 4e: 8TeV / 7 TeV / 4µ: 8TeV / 7 TeV / 2e2µ: 8TeV / 7 TeV 30 25 20 60 200 15 150 40 10 100 5 50 20 0 80 90 100 110 120 130 140 150 160 40 50 60 70 80 90 I Z candidates formed from `+ `− pair of same flavour 100 110 120 0 mZ1 (GeV) m4l+γ [GeV] I 40 < mZ1 < 120 GeV/c 2 I FSR recovery: |m``γ − mZ | < |m`` − mZ | I Z1 closest to PDG mass Z I ∃`a with pT (`a ) > 20 GeV/c I 12 < mZ2 < 120 GeV/c 2 I ∃`b with pT (`b ) > 10 GeV/c I Z2 with highest pT m4` > 100 GeV/c 2 & ∀` : m2` > 4 GeV/c 2 121.5 < m4` < 130.5 GeV/c 2 500 mZ2 (GeV) events H(ZZ → 4`) :: Building 4` candidates 55 / 62 H(ZZ → 4`) :: Lepton Selection one on-shell Z ⇒ hard ` one off-shell Z ⇒ soft `: I 50% below 10 GeV/c I background rate I selection efficiency My Work! this is a big Challenge H(ZZ → 4`) :: Loose Muon ID & ISO Efficiency 56 / 62 57 / 62 H(ZZ → 4`) :: ISO & SIP I Loose Muon ID has high and uniform efficiency I PF-Isolation at low pT is challenging I PU-corrections to PF-Isolation give flat curve I Significance of Impact parameter: SIP = IP σIP I uniform behaviour (while tracker resolution is worse in endcap) I SIP used to discover sudden pixel misalignment in 2012 data H(ZZ → 4`) :: Lepton Resolution and Scale I e :: Momentum Regression in ECAL I BDT trained on DY MC leads to 10% improvement I e :: Momentum Scale: using Z , J/Ψ → ee I µ :: Resolution & Scale: improved by correction of Tracker Misalignment (h1/pT i) I µ :: Validation on J/Ψ, Y and Z decays 58 / 62 59 / 62 H(ZZ → 4`) :: Precise Measurement of Z → 4` I First observation at CMS I JHEP 12 (2012) 034 I Same Fit procedure as for m4` I Good Data/MC agreement on width I MZ = 91.1876 ± 0.0021 GeV/c 2 I ΓZ = 2.4952 ± 0.0023 GeV/c 2 [PDG] Animation! Fast Animation Slow Animation m4` distribution 60 / 62 61 / 62 Alicia Calderon — 14th ICATPP Conference Como 2013 62 / 62 Sources I Riccardo Bellan — Muon intro at Quarkonia Workshop — https://indico.cern.ch/event/60388/ I Slava Valuev — Muon Object in Particle Flow — https://indico.cern.ch/event/110072/ I Cristina Botta — Muon Object developments — https://indico.cern.ch/event/185274/ I CMS-MUO-10-004 — Performance of CMS muon reconstruction in pp collision events at √ 7 TeV — http://cds.cern.ch/record/1456510 I CMS-Note-2008-097 — Muon Reconstruction in CMS I CMS-Note-2008-098 — Muon Identification in CMS I Alicia Calderon — 14th ICATPP Conference Como 2013 — http://cds.cern.ch/record/1609525
© Copyright 2024 ExpyDoc