\' Namel Ans'er K<l College Prep Midterm Review \, P acket Midterm Dates: ln Class & s 1. ln the accompanying diagram of a unit circle, BA tangent to circle O at A , CD it perpendicular to the x-axis, and OC isa radius. is I. 2. Circle O ad toe. has its centeratthe origin, OB =1, and 'l (' \l/ t Which distance represents sin9? @co (dl BA (a\ oD (c) oB 3. lf tanA<0 and cosl>0,inwhichquadrantdoes lA lf ruZBOA = d, which line segment shown length equal to cos d ? terminate? Y (a) (c) angles is coterminal with 100" 4. lf tan? < 0 and cscd > 0, I terminate? 6. ln which quadrant does the angle It does the angle 274 lie? 8. ln which quadrant does the angle to radian measure and express the answer in terms of n . i) l\ lLd)''., 1r160o T lre^, 4fr l5 aoE r5 t,' radians - -165o lie? E lf 11. Convert 112' lie? @ 7. ln which quadrant 9. Convert in which quadrant does x (q) -260" zoo' 180' a CA 1g. 5. Which of the following -820'? has to degrees. tr- 10. Convert 210' to radian measure and express the answer in terms of n . alc. L2. Convert fl lc' I l\ U) 7ln radians to degrees. l8 ir(i*",) l8 = = llD" fr. ncosd =-1 13 .na sind >0, what isthe value of 1 L4. lt tan0 =-fa and angle d lies in the second J quadrant, what is the value of cos 0 ? tan?? la lano= .S :1$ coso= fr= - t+ *= cL 13=cl 15. lf I is an angle in standard position in quadrant lll and sind = -!, all remaining t7' "ralrate ,rV. I trigonometric functions of d. -8 [ csc,E co:o - tanx>0. C.bLO t-l- l5 LosO -! = l-1 = }ano CC,t is an angle in standard position, evaluate all remaining trigonometric functions of and = SecO 16. lf x O sero -ll5 = -a -Ea 3 [a = cole ;-) -9- 2 --L- -a€ = hnD !-5 8 x if sinx = -+ I '-= .6 {L 3 =€ l5 17. Evaluate: sina+ 18. Evaluate: 2cos60otan30o r(|)(. q) 63"orL SneD. r CO)@" = tr3 *'5=l 19. Evaluate: cos30osin45osin30o @ J5-.6." -!-= Aaa\i 20. Express sin320o as a sin function of a positive acute angle. - Sin 4D- 411.. Express cos215o as a cos function of a positive acute angle. acute - -_SirrqS: ^-ir u 27 24. Find the exact value of cos300o. -rla CoS e SecUD' = It, -Stca0"= : 29. Express cosl2To as a -* -a\.-3 - seLs . 3 30. Express tan265o SrvlU-lo as a function of a positive acute *an 8'5" as a function of a positive acute cos(S,e - csc 3q" : co\ 5" 32. Find the measure of angle A if 0" < A <90" -1f)" = sinlo. Sn-latYl Le6 ='lD = loe ft=ll g" cot 210" angle less than 45". angle less than 45o. a -a ?. = .6 Cot 3C'= function of a positive acute -CoSSd = - I of secl2O". 28. Find the exact value of . angle less than 45o. 3L. Express sec231o = !a kO" Find the exact value = E . Find the exact value of sec 510o S€c\SD" = J3 CSC 25. Find the exact value of tan330o. tnn3D" as a csc function of a positive angle. co535' 23. Find the exact value of sin225o ' 22. Express csc157o and -7 ;3. Find the measure of angle cot (2A + 21)" A if 0" < A <90o and = tan(B A* 9) " . clc aA ra.\ tl3i1 t ci = l5R t 3Ll) -clD 34. What is the range of 35. What is the range of thefunction y=3sinx? the function y = 4cos3x? ..l (- .)- -q!\LLl j 15tl:tuO A ={ 36. What the amplitude of the graph of the equation y = 4sin2x? is 4 40. What y= is 37. What the amplitude of the graph of the equation is 'v = 2sin[1r), \2) 38. What 1- 5sln-x / = 7 = 42. What is !:2sin3x? u3 ! =3cos4x? 4 4=fl 7 43. Write the equation of the graph below. 2 v 1 x 2x -1 -2 \_ I ir \- the 41. What is the period of the graph of the equation Y = -6sin2x? LtTf the period of the graph of the equation is frequency ofthe graph of the equation e 2 L\I 39. What the frequency ofthe graph of the equation Y = -sin2x? , the period of the graph of the equation is COS LX . Write the equation of the graph below. 45. Write the equation of the graph below. 2 1 -1 a -):i^ )-x J=|sirazx 46. Write an equation for the sine curve whose period is 2n u( and whose amplitude is 3. 47. Write an equation for the sine curve whose period ls 4r and whose amplitude is L. 21 <= fl P=t $-n = $_l 2t T-z rll = 35inx 48. Write an equation for the cosine curve whose period ir '3 4 and whose amplitude is 4. 49. Write an equation for the cosine curve whose oeriod is '22 A and whose amotitude is U-v f-z |=s *l 'l = sin)'x : Llcos3X 4rt=Fn f =q 1. Sketchthegraph of I y= ^sin2x overthedomain 0<x<2tt' ih, ! .44. sketch !. the graph of y = cos 2x over the domain 0 < x < 2n ' 5\ i\ -Lw u\: ffinx overthe domain 03x <Ztr . ,/ha 3 \ I / \ I \ \ f \ JT /1 g \ / t t? t \ f r / t \ / $. Stcetctr t the graph of y I - -cotix over the domain 0 < x <2r \ fxr , a \ / f \ t z f. r \ "r ' nfI r2 I ET 2t \) ,5t 5$ What is the value of 2) | t. a,n Lrc" la cls(00" 2) COS IBLJ _l_ ,ls j- a s1. tn MBC, o=3, b =8 , and mlC = 60o . Find the length of side c . .z d=G' C'= Ar"rt f ), I "or( I | What is the value of cos(lrctanf), Lin( orr"orl), / 5b What is the value of rY> - ,f,c\b cosc t'- 8' -rt3\ex.cottd)) e a 5$. ln MQR,if p =7 , r to the nearest tenth. Q = 9, and mZR= 160o, find f '= ?" 1' - eylcosR Y'= 1" ,'q-- a(l)(qXco:lroc) qq ['= ]Lft.ulotZ"t.. ('= l- = ls.-ltoo-15.. - - f N lS.x \- sq. ln MMN , I =7 , m =8, and n = CC5L 5. Find = ty, *vt - ,l'' S-t' a[t)ts) nn4 I L= t 0 88. ffre sides of a triangle are 5, 10, and largest angle to the nearest degree. 5q xi A"'q 14. Find the )2rC-- 7\,- .lrrr n CoSL= E'* mll. LosB: tf t S-l.-{L- lL) . tt r&J rn+B= i35 6$. tn LABC , mZA = 42" , mZC = 58o Find a to the nearest tenth. ln MQR, mlP =63", mlR=8lo,and p=80. Find r to the nearest tenth. f= =-P SnR - ,;i',rP c 1 .. tic) -C tivr A StrrC (itD ..............__--.._..--== brr\92" )in5t" - = .lOir, Al?" Si r15S- Ct= l,XqUZ.^ T'urBt' >nb5' f Si,rl r:i - Sr S'r \t l" Srr \t' 5 S,"/, S f = 88,r.otrorrt f a tt'r A2s-l.q tn MBC , a =15 , c =20, and mZC = l00o . the measure of acute 2 to the nearest degree. O'S. CLC 5 _r5 _ aO sin l1 SioA h& ---:- r\L -=,r. srr-\A t:inB rq $rrr $ Sn rar' - -E)\(\tS: = ,l3g{s - SinA 4t 5' Za {n 4fr= tl}" .ln MBC, o=6,b=70,and the area of LABC 6tr. tn MBC, mZA=38", a =48, and b=19. Find the measure of acute ZB to the nearest degree. rn 4b = mZC =30o. Find . K= |c.b:,rrC K: l(t'Xrot(sirr 3D) K= 15 l.-1" 6S. Find the area ol LPQR to the nearest integer if p=7, r=8,and mlQ=63". K= If"s,(\Q K = l(r)(s[sirruS) K= ),t.q.tt. K*a5 . To the nearest tenth of a square centimeter, what is the area of the triangle below? 69. what is the area of the triangle below? P 6cm L K= L'Lrosin P K-- L ocsrn$ K= !Qo)[ro{si,1 l2o') K= !(to(r.o)[sirllsD K= t5 (= u13.30r. . . Kt q3 3 Ld(i How many different triangles can be constructed given the parts mlA= 45" , a = 40 , and b =36? &= = -,b Sint'l - Srt$ LIO 3rr .+L) Sirr$ = , u3ro'{ rQel + . ]r.t, How many different triangles can be constructed given the parts mlA = 150" , a =10 , and b =12? ab= ffi- >t11t5" :>lrlB 4QS,nB= jg,5ir1HS \o ) ,-.lD' f ' LtO'' - LtS = $,5' / 1I . i.{),, ..\S - ttS X iD S,rll5d snB la Srn$ -,D=,'.b= E5inllr}" rO iO KeF+ sI T" 5J' -15D"' lt']" X _ _f, g. ir.f 5rt>u. = ?qd'X r{f . now many different triangles can be constructed parts given the m./.E =105" , e = 18, and -f =l5t I , l.-+ I sinE srn tr rt 15 Sff>" = 7fu How many different triangles can be constructed given the parls mZA=23", o=15, and b:18? c\ i5,_4 SnzS' SrrtF s irlt) lSSit'\b-= lB:sin?3 -_--=- rS.Sr,lF= ?5sinr05 )x I^ l) is rt SnF = .8C,Hq (ei +, 5'1" Srnb = .{utcl Re [ +' e'b T'. a8'.lC ' T : l>L" ?3' 'T- ' 5t" r- IOS = l3cl" '/ '[r : lLU"r lD5'= 33i' X +- [t) 21. fwo forces have magnitudes of 25 and 40 pounds and act upon a body at an angle of 67" between them' Find, to the nearest pound, the resultant of these two forces. b,= Gtr Lt- ;1ctccosb b'* qo', &*- 3"(uo[z:[rr'''-il5) b'= 5.1,13rJ"' b-= 55 lbs. , C..:oS SiAL= r0l ,3q18 rn 2;L = ,]5 Find, to the nearest degree, the measure of the angle between two forces of 30 pounds and 35 pounds if the magnitude of the-resultant is 42 pounds. L':> A - r_ }bek tcelr {o51s\= iglJ" -'ioo = co:)B -- ,ED" e't Lt- b' '1 crC cosB=@ 4e';Xeo) rn 7S - Aot ,1lcD +b= ?Oo Express as a single trigonometric function: cos d(sec d - cos d) I - cosl> >ir'\tD 7x. Express as a single trigonometric functio n, tune= sec !rrlO 7ps3 = 'yr9',LliJi= SnD -j-urk CJ>92 I 0 {. Express as a single trigonometric function: .wz 0-cot2 o-sil2 0 cv- I - Srl=O t*r't> 80. co,5'o I ' Express :---------;- as a single trigonometric I +cot'9 function. *) _ = 5inzB 80. Wfrictr expression sin 22o cos I 8o + cos 22" sin I 8' (a) cos4Oo (c) sin4" i>io (aa" (a) sin 80" (c) sin 60' @ (d) cos 60o cos 80o 8t. CDS\JrO' ? @ sin+0" t 18 ") = 5i114C" Prove the statement sin (90' * 0) = cos d . )irl(A t b) = brnA cosB r cosfi sirlib r tcsqO' Sing S\ n(9d r t) = \,.1D" tc:O == Co: t7C' -lC) = to (b) cos4' CSC"() 8O. The expression cosT0ocosl0o+sin70osinl0o is equivalent to is equivalent :)::rt "(r)bi'rt)) /lt, 8*. Prove the statem.nt "@ co':, (A - B) =co:r\coi5$ Co)G - r$) g5. nna tr,e r ._\r uf sinB) =co:e)Co:\8$'. )rr6Si rtrtD" = " cos(4s"-30.). r (o:e)1-r) t (:,n u\u) LD: (n -b) cc:(+S = tc:tl co\R + .:rr-r A:inb *'f rEl';'.*; ., a' ., :ltt a : - CDSL] : Gq.+*6 = b., 80. Find the exact value of cos 1056 by using cos (45'+ 60.) . 8lI. tf sin I co5(At$ = ClSrl Cr)Sb - sinl+ si rrb cos.B = Co{qf. Od)- value of cos(,< + a). Colx 5"CCL hLl' - 5,rrQ{Si nL00 q, !A a -E-,-E a-a = 6_@ qq = = J5-iu L- "J- -15 = f13 J__k_+ ri 7- tt with angle I in quadrant il and with angle .B in quadrant llt, find the co5((1 t E= rDlf,cc:B- srirAsinb =f '.X+) (i"Y.?) 1 89. A and B are positive acute angles. lf sinl = 1 , and cos B find the value of sin(l - B). =:. 13' Sn(A-B) cosAsrnB = SnAceb-B- 8q. The expression 1-2sin2 45o has the same value as @ cos 90" =(txt) ("J(e | /1, Iq=3b2o tos W (b) sin22.5o (d) sin 90o (a) cos 45o cosz(+:) '.g5 = J\, (p5 I I QB. rne expression cos' 40o value as L - sin2 40o has the same (b) cos20' (a) sin 80' (c) sin 20' @) tt. lf sinl =1) CobZft cos80' cbsz(\c) and angle I is acute, find cos2l. = t -aSn'A > \-a(.?Y = l- .?(*) = 25 - -l-u- =72s Z> 9D lf cosd=-1 ,nO 6 is in quadrant ll, find cos20. 5 the value of sinZA. c's-rD=jl$,-, 'a(ft)= \tS a' ' r eS 75 e> =-L25 5\rrZA = }5irIA CCSA a(a)ts '2- aq a5 t, gB. ft .B is a third quadrant angle and sin B =-3, find sin 28 il. . gS tf A is apositive acute the value of sin1,,l. ,,m v I 90. lf ,4 is a the value of ='( P.)[:; cosin=,f_#= cosl = 1, find . lf IIf ii lol\' . i5u," of l? Co\X= ZD \f+ S$. find, to the nearest degree, the solution set of 8cosx +2 = 0 over the domain 0o ( x < 360o. ur" \'a a V Find, to the nearest degree, the solution set 20 cot x -13 = 0 over the domain 0o ( x < 360o . 9f Janx = ?9 i5 Rel 2\' 51" L 5lm' !51' :I ReC4 ' I = t, -1 ;'l- T =Vfyq =3 EE,E 6.5 -lib-E',(5.= cosx= -+ !A , find I positive acute angle and :-Vs-E l.j $,fi =,fr .or1l. ---< rs 2 3ir1Z$= AsrrrBcos6 angle and cos A =Z fi. to the nearest degree, the solution set of 16sin2 x =9 overthe domain 0o ( x <360o. Find, SiflrX = fr gir\X = t 1 r?eI + 4'1" a"q1' ][r l3\" N- 3\\"' /l . Find, to the nearest degree, the solution set of tarr2 x +3tanx= l8 overthe domain 0o ( x < 360o. lcrrl'x r 3\nvrx - \b = C-l (trn K { L-e\({qvrx - a)= o lqnx- - u R<la, t\" -E: qq" 1S: l]_lcl" 1r.rX ]'anx= 3 Re[ a . r, rrr ]a' Ja" J53" = f;l U1*q(r)ti0, '4trTf . Find, to the nearest degree, all values of x in the interval 0o ( x < 360" that satisfy the equation -K 6cos2.r+cos.r-1=0. ("* (pcosx * dacosK - r\ '= o CoSK = Re [ \' 3 -t * 5G-x--4 *. co:( : _- Lo0' I Ret a'. t" tr'. IZO' '=: Jl' m"'Eqo E:2Sq' -t t- T4_;,(dto i'r r-.x = {.") kirtX = a "|6rr\X= - L.o L():K= CCf>'* 10O. Find, to the nearest degree, all values of x in the interval 0o ( x < 360' that satisfy the equation 3sin2x+8cosx=7. S (r- co:;x) t Bcc-,sK = 3^ 3ccsax +8co:x= -J Sc\uhu,r Re$ :L' -19 L (3x - r-o)(ax -z) I - 3Cc,1. \ + Bco:K _ u\ =O 3costn - ScoSx t u\ =O (cosK - a)(acos K - a-) '= o Co\A=a LO\'r(=Z )$; iL /\ 4' 4t" L{X" 3 fcrS K = -'$ t fi:.-\(-tx*i) zQ c(-.:'( - '-B r i i) l\c _LC fii : 3\)" ftr) a = Z. 2 J Cc-'5r(-* 3
© Copyright 2025 ExpyDoc