Carbon geometries as optimal configurations Ulisse Stefanelli In collaboration with Edoardo Mainini, Hideki Murakawa, Paolo Piovano Ulisse Stefanelli (Vienna) ESI Vienna, 17.10.2014 1 / 18 Carbon structures Graphene Nanotubes Fullerenes local minimizers Ulisse Stefanelli (Vienna) ESI Vienna, 17.10.2014 2 / 18 Quantum ? Schr¨ odinger 60 carbon atoms ⇒ solve Schr¨ odinger in R1080 (R ∼ {x1 , . . . , x10 } Ulisse Stefanelli (Vienna) 101080 grid points) ESI Vienna, 17.10.2014 3 / 18 Configurational energy Nuclei: {x1 , . . . , xn } with charges {z1 , . . . , zn } Electrons: {y1 , . . . , ym } Time-independent, Born-Oppenheimer temperature → 0 n o H1 Admissible waves: A = ψ : (R3 ×Z2 )m −→ C, kψkL2 = 1, antisymm. Electronic hamiltonian X X zi zj X zi 1 1X 2 H= + − ∂yα + 2 α |yα −yβ | |xi −xj | |yα −xi | α6=β i6=j i,α Energy Z E (x1 , . . . , xn ) = min ψ∈A Ulisse Stefanelli (Vienna) ψ ∗ (y , s)H(x, y )ψ(y , s) dy ds (R3 ×Z2 )m ESI Vienna, 17.10.2014 4 / 18 Carbon nanostructures Ulisse Stefanelli (Vienna) ESI Vienna, 17.10.2014 5 / 18 Carbon nanostructures [Tersoff 89] E= 1X 1 X v2 (|xi −xj |)+ v3 (θijk ) 2 2 i6=j ijk∈NN xi θijk xk xj Two-body interactions v2 Three-body interactions v3 1 [E & Li 09] 2π/3 −1 Ulisse Stefanelli (Vienna) ESI Vienna, 17.10.2014 4π/3 6 / 18 2D Crystallization Three-body-interactions I I I [E & Li 09] thermodynamic limit [Mainini & S. 14] finite crystallization [Davoli, Piovano, & S. 1?] Wulff shape, isoperimetric Two-body-interactions I I I I triangular lattice [Heitman & Radin 80] sticky potentials [Radin 81] [Wagner 83] soft potentials [Theil 06] long-range interactions [Au Yeung, Friesecke, & Schmidt 12], [Schmidt 13] Wulff shape Three-body-interactions I hexagonal lattice square lattice [Mainini, Piovano, & S. 14] finite crystallization, Wulff shape Ulisse Stefanelli (Vienna) ESI Vienna, 17.10.2014 7 / 18 Graphene E= 1X 1 X v2 (|xi −xj |) + v3 (θijk ) 2 2 i6=j ijk∈NN Ground states are honeycomb in 2D p En = −b3n/2 − 3n/2c (exact surface energy geometry) Grounds states are perimeter-minimizers Differ from Wulff by O(n3/4 ) atoms Ulisse Stefanelli (Vienna) ESI Vienna, 17.10.2014 8 / 18 Rolling up newly activated bonds = λ θnanotube = 2π/3 + cw −1 v3 (θnanotube ) = cw −2 number of angles = cw λ λ w Enanotube = Egraphene − #(new bonds) + #(angles)v3 (θnanotube ) 1 = Egraphene − λ + cλw 2 < Egraphene w Aspect ratio: n = w λ, minimize −λ + c Ulisse Stefanelli (Vienna) ESI Vienna, 17.10.2014 λ2 ⇒ λ ∼ n, w ∼ c n 9 / 18 Rolling up Rolling up a nanotube sufficiently large diameter needed armchair b pa+qb zigzag a Growing a nanotube Ulisse Stefanelli (Vienna) constant diameter by adding atoms ESI Vienna, 17.10.2014 10 / 18 Fullerenes Local minimality v3 strictly convex and decreasing around 3π/5 ⇒ C20 and C60 strict local minimizers [video] Ulisse Stefanelli (Vienna) ESI Vienna, 17.10.2014 11 / 18 Fullerenes 5 6 1 XX 1 XX E˜ ≥ −#(bonds) + v3 (πi ) + v3 (hi ) 2 pent 2 i=1 hex i=1 ! ! 5 6 X X 1 1X 1X 1 v3 πi + v3 hi ≥ −#(bonds) + 2 pent 5 2 6 i=1 ≥ −#(bonds) + Ulisse Stefanelli (Vienna) hex i=1 1 1 · 12 · 5v3 (3π/5) + · 20 · 6v3 (2π/3) = E (C60 ) 2 2 ESI Vienna, 17.10.2014 12 / 18 Fullerenes ! Planarity of faces needed corannulene Ulisse Stefanelli (Vienna) X Planarity ⇒ stability? [Kamatgalimov et al. 10] pentaindenocorannulene ESI Vienna, 17.10.2014 graphene 13 / 18 Nanotubes α β α Two competing periodic models: Rolled-up α = 2π/3 > β [Dressehaus et al. 95] Polyhedral α = β < 2π/3 [Cox-Hill 07] Ulisse Stefanelli (Vienna) ESI Vienna, 17.10.2014 14 / 18 Nanotubes Minimize α 7→ E3 (α) = 2v3 (α) + v3 (β(α, γ)) γ α β 0.1 2v3( )+v3( ( )) Rolled-up Cox-Hill 0.004725 β(α) 0.00472 0.05 0.004715 2.0795 αp Ulisse Stefanelli (Vienna) α∗ αru 0 2.06 ESI Vienna, 17.10.2014 2.08 2.0805 2.08 2.081 2.1 2.12 15 / 18 Nanotubes C (α∗ ) is a strict local minimizer Ulisse Stefanelli (Vienna) ESI Vienna, 17.10.2014 16 / 18 Nanotubes Local minimality v3 strictly convex at 2π/3 ⇒ C (α∗ ) is a strict local minimizer E˜3,density = X 2v3 (αi ) + v3 (βi ) /#(atoms) ≥ 2v3 (αmean ) + v3 (βmean ) (convexity of v3 ) ≥ 2v3 (αmean ) + v3 (β(αmean , γ∗ )) (if γmean ≤ γ∗ ) ≥ 2v3 (αmean ) + v3 (β(αmean , γmean )) ≥ 2v3 (b α) + v3 (β(b α, γ∗ )) (numerically checked) ∗ ≥ 2v3 (α∗ ) + v3 (β(α∗ , γ∗ )) = E3 (α ) Ulisse Stefanelli (Vienna) (concavity of β) ESI Vienna, 17.10.2014 (minimality) 17 / 18 Nanotubes 0.12 F* Random Modified 0.11 0.1 E3 0.09 0.08 0.07 0.06 0.05 1.4137 1.4137 1.41371 1.41371 1.41372 1.41372 1.41373 1.41373 1.41374 http://www.mat.univie.ac.at/∼stefanelli Ulisse Stefanelli (Vienna) ESI Vienna, 17.10.2014 18 / 18
© Copyright 2024 ExpyDoc