CHAPTER 16 REVIEW |||| 1107 EXERCISES 1. A vector field F, a curve C, and a point P are shown. 13–14 Show that F is conservative and use this fact to evaluate (a) Is xC F ⴢ dr positive, negative, or zero? Explain. (b) Is div F共P兲 positive, negative, or zero? Explain. xC F ⴢ dr along the given curve. 13. F共x, y兲 苷 共4 x 3 y 2 ⫺ 2 x y 3兲 i ⫹ 共2 x 4 y ⫺ 3 x 2 y 2 ⫹ 4y 3 兲 j, C: r共t兲 苷 共t ⫹ sin t兲 i ⫹ 共2t ⫹ cos t兲 j, 0 艋 t 艋 1 y 14. F共x, y, z兲 苷 e y i ⫹ 共xe y ⫹ e z 兲 j ⫹ ye z k, C is the line segment from 共0, 2, 0兲 to 共4, 0, 3兲 C 15. Verify that Green’s Theorem is true for the line integral xC xy 2 dx ⫺ x 2 y dy, where C consists of the parabola y 苷 x 2 x from 共⫺1, 1兲 to 共1, 1兲 and the line segment from 共1, 1兲 to 共⫺1, 1兲. P 16. Use Green’s Theorem to evaluate xC s1 ⫹ x 3 dx ⫹ 2 xy dy , where C is the triangle with vertices 共0, 0兲, 共1, 0兲, and 共1, 3兲. 17. Use Green’s Theorem to evaluate xC x 2 y dx ⫺ x y 2 dy, 2–9 Evaluate the line integral. 2. where C is the circle x 2 ⫹ y 2 苷 4 with counterclockwise orientation. xC x ds, C is the arc of the parabola y 苷 x 2 from (0, 0) to (1, 1) 3. 18. Find curl F and div F if xC yz cos x ds , C: x 苷 t, y 苷 3 cos t, z 苷 3 sin t, 0 艋 t 艋 F共x, y, z兲 苷 e⫺x sin y i ⫹ e⫺y sin z j ⫹ e⫺z sin x k 4. xC y dx ⫹ 共x ⫹ y 兲 dy, C is the ellipse 4x ⫹ 9y 苷 36 with counterclockwise orientation 19. Show that there is no vector field G such that 5. xC y dx ⫹ x dy , C is the arc of the parabola x 苷 1 ⫺ y from 共0, ⫺1兲 to 共0, 1兲 20. Show that, under conditions to be stated on the vector fields F 6. xC sxy dx ⫹ e y dy ⫹ xz dz, 2 3 2 2 2 C is given by r共t兲 苷 t 4 i ⫹ t 2 j ⫹ t 3 k, 0 艋 t 艋 1 7. C is the line segment from 共1, 0, ⫺1兲, to 共3, 4, 2兲 8. xC F ⴢ dr, where F共x, y兲 苷 x y i ⫹ x 2 j and C is given by r共t兲 苷 sin t i ⫹ 共1 ⫹ t兲 j, 0 艋 t 艋 9. where F共x, y, z兲 苷 e z i ⫹ xz j ⫹ 共x ⫹ y兲 k and C is given by r共t兲 苷 t 2 i ⫹ t 3 j ⫺ t k, 0 艋 t 艋 1 xC F ⴢ dr, 10. Find the work done by the force field F共x, y, z兲 苷 z i ⫹ x j ⫹ y k in moving a particle from the point 共3, 0, 0兲 to the point 共0, 兾2, 3兲 along (a) a straight line (b) the helix x 苷 3 cos t, y 苷 t, z 苷 3 sin t 11–12 Show that F is a conservative vector field. Then find a func- tion f such that F 苷 ∇ f . 11. F共x, y兲 苷 共1 ⫹ x y兲e and G, curl共F ⫻ G兲 苷 F div G ⫺ G div F ⫹ 共G ⴢ ⵜ 兲F ⫺ 共F ⴢ ⵜ 兲G 21. If C is any piecewise-smooth simple closed plane curve xC x y dx ⫹ y 2 dy ⫹ yz dz, xy curl G 苷 2 x i ⫹ 3yz j ⫺ xz 2 k. 2 i ⫹ 共e ⫹ x e 兲 j y 2 xy 12. F共x, y, z兲 苷 sin y i ⫹ x cos y j ⫺ sin z k and f and t are differentiable functions, show that xC f 共x兲 dx ⫹ t共 y兲 dy 苷 0 . 22. If f and t are twice differentiable functions, show that ⵜ 2共 ft兲 苷 f ⵜ 2t ⫹ tⵜ 2 f ⫹ 2ⵜ f ⴢ ⵜt 23. If f is a harmonic function, that is, ⵜ 2 f 苷 0, show that the line integral x fy dx ⫺ fx dy is independent of path in any simple region D. 24. (a) Sketch the curve C with parametric equations x 苷 cos t y 苷 sin t z 苷 sin t 0 艋 t 艋 2 (b) Find xC 2 xe 2y dx ⫹ 共2 x 2e 2y ⫹ 2y cot z兲 dy ⫺ y 2 csc 2z dz. 25. Find the area of the part of the surface z 苷 x 2 ⫹ 2y that lies above the triangle with vertices 共0, 0兲, 共1, 0兲, and 共1, 2兲. 26. (a) Find an equation of the tangent plane at the point 共4, ⫺2, 1兲 to the parametric surface S given by r共u, v兲 苷 v 2 i ⫺ u v j ⫹ u 2 k 0 艋 u 艋 3, ⫺3 艋 v 艋 3 1108 |||| ; (b) Use a computer to graph the surface S and the tangent plane found in part (a). (c) Set up, but do not evaluate, an integral for the surface area of S. (d) If x2 y2 z2 k F共x, y, z兲 苷 2 i ⫹ 2 j ⫹ 1⫹x 1⫹y 1 ⫹ z2 CAS CHAPTER 16 VECTOR CALCULUS Evaluate xC F ⴢ dr, where C is the curve with initial point 共0, 0, 2兲 and terminal point 共0, 3, 0兲 shown in the figure. z (0, 0, 2) 0 find xxS F ⴢ dS correct to four decimal places. (0, 3, 0) (1, 1, 0) 27–30 Evaluate the surface integral. y (3, 0, 0) 27. xxS z dS, where S is the part of the paraboloid z 苷 x 2 ⫹ y 2 that lies under the plane z 苷 4 28. xxS 共x 2 z ⫹ y 2 z兲 dS, where S is the part of the plane z 苷 4 ⫹ x ⫹ y that lies inside the cylinder x 2 ⫹ y 2 苷 4 29. xxS F ⴢ dS, where F共x, y, z兲 苷 x z i ⫺ 2y j ⫹ 3x k and S is the sphere x 2 ⫹ y 2 ⫹ z 2 苷 4 with outward orientation 30. xxS F ⴢ dS, x 38. Let F共x, y兲 苷 共2 x 3 ⫹ 2 x y 2 ⫺ 2y兲 i ⫹ 共2y 3 ⫹ 2 x 2 y ⫹ 2 x兲 j x2 ⫹ y2 Evaluate x䊊C F ⴢ dr, where C is shown in the figure. where F共x, y, z兲 苷 x 2 i ⫹ x y j ⫹ z k and S is the part of the paraboloid z 苷 x 2 ⫹ y 2 below the plane z 苷 1 with upward orientation y C x 0 31. Verify that Stokes’ Theorem is true for the vector field F共x, y, z兲 苷 x i ⫹ y j ⫹ z k, where S is the part of the paraboloid z 苷 1 ⫺ x 2 ⫺ y 2 that lies above the xy-plane and S has upward orientation. 2 2 2 32. Use Stokes’ Theorem to evaluate xxS curl F ⴢ dS, where F共x, y, z兲 苷 x 2 yz i ⫹ yz 2 j ⫹ z 3e xy k, S is the part of the sphere x 2 ⫹ y 2 ⫹ z 2 苷 5 that lies above the plane z 苷 1, and S is oriented upward. 39. Find xxS F ⴢ n dS, where F共x, y, z兲 苷 x i ⫹ y j ⫹ z k and S is the outwardly oriented surface shown in the figure (the boundary surface of a cube with a unit corner cube removed). z 33. Use Stokes’ Theorem to evaluate xC F ⴢ dr, where F共x, y, z兲 苷 x y i ⫹ yz j ⫹ z x k, and C is the triangle with vertices 共1, 0, 0兲, 共0, 1, 0兲, and 共0, 0, 1兲, oriented counterclockwise as viewed from above. (0, 2, 2) (2, 0, 2) 1 34. Use the Divergence Theorem to calculate the surface integral xxS F ⴢ dS, where F共x, y, z兲 苷 x i ⫹ y j ⫹ z k and S is the surface of the solid bounded by the cylinder x 2 ⫹ y 2 苷 1 and the planes z 苷 0 and z 苷 2. 3 3 3 35. Verify that the Divergence Theorem is true for the vector field F共x, y, z兲 苷 x i ⫹ y j ⫹ z k, where E is the unit ball x 2 ⫹ y 2 ⫹ z 2 艋 1. 36. Compute the outward flux of F共x, y, z兲 苷 xi⫹yj⫹zk 共x 2 ⫹ y 2 ⫹ z 2 兲 3兾2 through the ellipsoid 4 x 2 ⫹ 9y 2 ⫹ 6z 2 苷 36. 37. Let F共x, y, z兲 苷 共3x 2 yz ⫺ 3y兲 i ⫹ 共x 3 z ⫺ 3x兲 j ⫹ 共x 3 y ⫹ 2z兲 k 1 1 y S x (2, 2, 0) 40. If the components of F have continuous second partial deriva- tives and S is the boundary surface of a simple solid region, show that xxS curl F ⴢ dS 苷 0. 41. If a is a constant vector, r 苷 x i ⫹ y j ⫹ z k, and S is an ori- ented, smooth surface with a simple, closed, smooth, positively oriented boundary curve C, show that yy 2a ⴢ dS 苷 y C S 共a ⫻ r兲 ⴢ dr APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES 23. 3 21. 6 713 180 19. 1 29. 2 8 3 4 31. 0.1642 25. 0 33. 3.4895 EXERCISES 17.1 [ 1 All solutions approach either 0 or as x l . 10 g 9. 80 f _3 3 (b) 5 _10 z 0 5 2 0 (c) x 苷 3 cos t, y 苷 3 sin t, z 苷 1 3共cos t sin t兲, 0 t 2 0 2 2 y 17. y 苷 2e3x兾2 ex 19. y 苷 e x/2 2xe x兾2 21. y 苷 3 cos 4x sin 4x 23. y 苷 ex共2 cos x 3 sin x兲 2 25. y 苷 3 cos( 2 x) 4 sin( 2 x) 1 x 0 EXERCISES 17.2 y 0 2 2 0 _2 x PAGE 1124 3. y 苷 c1 c2 e 2x 3 7 4 cos 4x 20 sin 4x 1 5. y 苷 e 共c1 cos x c2 sin x兲 10 ex 3 11 1 x 7. y 苷 2 cos x 2 sin x 2 e x 3 6x 1 9. y 苷 e x ( 2 x 2 x 2) 3 11. The solutions are all asymptotic to yp 苷 101 cos x 103 sin x as x l . Except for yp , all _3 8 solutions approach either yp or as x l . 1 40 1 2x 17. 3 PAGE 1103 7. 9兾2 11. 32兾3 13. 0 arcsin(s3兾3) 17. 13兾20 19. Negative at P1 , positive at P2 21. div F 0 in quadrants I, II; div F 0 in quadrants III, IV 15. 341 s2兾60 N 1. y 苷 c1 e2x c2 ex 2 x 2 2 x 1 _2 N e 2x e x3 e 1 1 e3 3 2 _2 EXERCISES 16.9 27. y 苷 1 29. No solution 31. y 苷 e2x 共2 cos 3x e sin 3x兲 33. (b) 苷 n 2 2兾L2, n a positive integer; y 苷 C sin共n x兾L兲 4 z 5. 2 9. 0 ] 1 PAGE 1097 7. 1 3. 0 5. 0 11. (a) 81兾2 PAGE 1117 13. P 苷 et c1 cos (10 t) c 2 sin (10 t) 15. EXERCISES 16.8 N 1. y 苷 c1 e 3x c 2 e2x 3. y 苷 c1 cos 4x c 2 sin 4x 5. y 苷 c1 e 2x兾3 c 2 xe 2x兾3 7. y 苷 c1 c 2 e x兾2 2x 9. y 苷 e 共c1 cos 3x c 2 sin 3x兲 11. y 苷 c1 e (s31) t兾2 c 2 e (s31) t兾2 where D 苷 projection of S on xz-plane 37. 共0, 0, a兾2兲 39. (a) Iz 苷 xxS 共x 2 y 2 兲 共x, y, z兲 dS (b) 4329 s2 兾5 8 41. 0 kg兾s 43. 3 a 30 45. 1248 N A127 CHAPTER 17 27. 48 xxS F ⴢ dS 苷 xxD 关P共h兾x兲 Q R共h兾z兲兴 dA, 35. |||| 81 20 _3 13. yp 苷 Ae 共Bx 2 Cx D兲 cos x 共Ex 2 Fx G兲 sin x 15. yp 苷 Ax 共Bx C 兲e 9x 17. yp 苷 xex 关共Ax 2 Bx C 兲 cos 3x 共Dx 2 Ex F兲 sin 3x兴 2x CHAPTER 16 REVIEW N PAGE 1106 True-False Quiz 1. False 19. y 苷 c1 cos ( 2 x) c 2 sin ( 2 x) 3 cos x 1 3. True 5. False 7. True 7. 110 3 9. 4兾e 33. 2 1 25. 3. 6 s10 5. 11. f 共x, y兲 苷 e y xe xy (27 5 s5 ) 29. 共兾60兲(391 s17 1) 17. 8 27. 11 12 (b) Positive 1 21. y 苷 c1e x c2 xe x e 2x 23. y 苷 c1 sin x c 2 cos x sin x ln共sec x tan x兲 1 25. y 苷 关c1 ln共1 ex 兲兴e x 关c2 ex ln共1 ex 兲兴e 2x Exercises 1. (a) Negative 1 4 15 13. 0 [ ] 27. y 苷 e x c1 c 2 x 2 ln共1 x 2 兲 x tan1 x 1 1 6 37. 4 39. 21 64兾3 EXERCISES 17.3 N PAGE 1132 1. x 苷 0.35 cos (2 s5 t) 3. x 苷 5 e6t 5 et 1 6 5. 49 12 kg
© Copyright 2024 ExpyDoc