Functional Beamforming for Aeroacoustic Source Distributions Robert P. Dougherty OptiNav, Inc. Presentation for the 20th Legacy AIAA/CEAS Aeroacoustics Conference, June 2014. See the AIAA web site for the paper, AIAA-2014-3066. 2 Outline • Definition and Theory • Jet Example • Propeller Example • Edge Source Example • Wind Tunnel Speaker Example • Hot, high-speed jet • Model Rocket • Misc. • Recommendations • Conclusions and recommendations 3 Definition and Theory CSM model Remove the noise: adjust the diagonal elements to minimize trace while keeping CSM nonnegative definite. Different paper… 4 Beamforming 5 Functional Beamforming 6 Power Function of a Matrix 7 Sidelobe Performance Source at k, steer to l 8 FDBF for multiple sources 9 Functional Beamforming for multiple sources The Löwner-Heinz inequality implies This means 10 11 On the other hand… Eigenvalue form: ! !! = ! ! !! ! , ! = 1, … , !!!!! !! !!! = 1 !!! !! Weighted power means inequality: is a decreasing function of ! 12 So… !! ! is a decreasing function of ν and and The exact answer is surrounded! Effect of errors in the steering vectors 13 Consider an actual steering vector and a model steering vector Errors in θ limit ν. 14 Jet Example NASA Jet Noise Array/Shop Air 15 16 Jet Example: Simulated point source NASA Jet Noise Array/Shop Air 17 18 50% 1% 2% 3% 0% 4% 5% !50% Beamforming+level,+dB+ 6% 7% !100% 8% 9% !150% 10% 11% 12% !200% 13% !250% !2.5% 14% !2% !1.5% !1% !0.5% 0% 0.5% x+(transverse,+horizontal),+inches+ 1% 1.5% 2% 2.5% 15% 19 Jet Example: Two simulated point sources 20 dB level difference 21 50% 1% 2% 3% 0% 4% 5% !50% Beamforming+level,+dB+ 6% 7% !100% 8% 9% !150% 10% 11% 12% !200% 13% !250% !2.5% 14% !2% !1.5% !1% !0.5% 0% 0.5% x+(transverse,+horizontal),+inches+ 1% 1.5% 2% 2.5% 15% 22 Jet Example: Simulated line source 24 90# 1# 2# 85# 3# 4# 80# 5# Beamforming+level,+dB+ 75# 6# 7# 70# 8# 9# 65# 10# 11# 60# 12# 55# 50# (2.5# 13# 14# (2# (1.5# (1# (0.5# 0# 0.5# 1# x+(transverse,+horizontal),+inches+ 1.5# 2# 2.5# 15# 25 Jet Example: Shop air jet 26 16 kHz 15 dB scale ν=1 ν=2 ν=4 ν=8 ν = 16 ν = 32 ν 16 kHz, ν = 1-100 90# 1# 2# 85# 3# 4# 80# 5# Beamforming+level,+dB+ 75# 6# 7# 70# 8# 9# 65# 10# 11# 60# 12# 55# 13# 14# 50# (6# (4# (2# 0# 2# x+(transverse,+horizontal),+cm+ 4# 6# 15# 28 Propeller Example 29 FDBF 30 CLEAN-SC 31 Functional Beamforming 32 Robust Adaptive Beamforming 33 34 Source Integration Narrowvand)array)average)SPL,)dB)re)20) micro)Pa,)47Hz)BW) 60# Motor# Prop# 55# 50# 45# 40# 35# 30# 25# 20# 6000# 8000# 10000# Frequency,)Hz) 12000# 14000# 35 Edge Source Example 37 10 kHz 38 16 kHz 39 30 kHz 40 Wind Tunnel Speaker Example Speaker test in 40x80/NFAC Data from Clifton Horne, Nathan Burnside, NASA Ames Experimental Aerophysics Branch Speaker enclosure fairing in center of wind tunnel test section Level-sensing wall array: 24 microphones, 32 inch diameter, Kevlar cover 41 42 100 kt, Mach 0.15 32 W FDBF Functional BF, ν = 32 43 100 kt, Mach 0.15 3.6 W FDBF Functional BF, ν = 32 44 100 kt, Mach 0.15 3.6 W CLEAN-SC Functional BF, ν = 64 45 100 kt, Mach 0.15 0.32 W FDBF Functional BF, ν = 32 46 100 kt, Mach 0.15 0.32 W CLEAN-SC Functional BF, ν = 64 47 100 kt, Mach 0.15 Functional BF, ν = 32 FDBF 70# Mic 1 in array 3.6 W 32 W 50# 40# 0.32 W 30# FDBF#32#W# 20# Mic 1 in array 60# SPL,%dB%Re%20%micro%Pa%at%array,%1/12%OB% SPL,%dB%Re%20%micro%Pa%at%array,%1/12%OB% 60# 70# FDBF#3.6#W# 50# 30# FBF#32#W# 20# Frequency%(Hz),%1/12%OB% FBF#3.6#W# FBF#0.32#W# 10000# 32 W 40# FDBF#0.32#W# 10# 1000# 3.6 W 0.32 W 10# 1000# 10000# Frequency%(Hz),%1/12%OB% 48 Heated, supersonic jet at NASA-Glenn 49 SP 44504 NPR = 3.5 NRT = 2.95 FDBF Functional Beamforming 500 Hz 1 kHz 2 kHz 50 50 SP 44504 NPR = 3.5 NRT = 2.95 FDBF Functional Beamforming 5 kHz 8 kHz 10 kHz 51 51 52 Model Rocket Motor Rocket Test 53 Remote control Reflecting surface 53 FDBF 54 Functional Beamforming 55 Determine Surface Reflection Coefficient by Functional Beamforming Integration 56 Integral1 (f) Integral2 (f) 56 Determine Surface Reflection Coefficient by Functional Beamforming Integration Integrated)source)strength,)dB) 80# Integral_1# Integral_2# 75# 70# 65# 60# 55# 50# 100# 1000# 10000# Frequency,)Hz) 100000# 57 58 Misc. 59 Mach 0.15 jet. 60 dB scale FDBF FB 60 61 Spatula at 0° AOA. 18.5 kHz, 20 dB range FDBF FB 747-8 model, 35.8 kHz, 50 dB range 63 Airbrush pump FDBF 10 dB FB-40 60 dB FDBF 60 dB Airbrush pump/putty knife edge FDBF 10 dB FB-40 40 dB FDBF 40 dB 64 65 Recommendations 66 What is ν ? 1-∞ Too small: still have sidelobes Too large: some real sources go away if steering vectors not perfect With a decent array and physical model there is lots of space Suggest 32 67 How about quantitative spectra? Integration probably works great for normal cases Be sure to normalize to the trace Research opportunity for mixed types of steering vectors 68 Conclusions Functional Beamforming changes everything Best dynamic range Same speed as FDBF Better resolution than FDBR CLEAN-SC competitive sometimes Additional steps needed for best resolution and quantitative spectra Ridge detection Linear programming postprocessing (nonlinear issue) Optimize steering vectors? Applications should be amazing
© Copyright 2025 ExpyDoc