Laser Technology for Compact X-ray Sources Franz X. Kärtner Ultrafast Optics and X-rays Division Center for Free-Electron Laser Science, DESY and Department of Physics, University of Hamburg, Hamburg, Germany2! The Hamburg Center for Ultrafast Imaging and Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, MIT, Cambridge MA, USA www.cfel.de www.rle.edu Doha CLS-Workshop April 4-5, 2014 • Research center in the Helmholtz Association • 2200 staff • 3000 visiting scientists/year Hamburg. City of Light • • • New High Brilliance X-ray Sources Research Labs / Inhouse Application Labs DESY CFEL Building, September 2012 4 Acknowledgement (DESY, MIT)! CFEL @ DESY! MIT Emilio Nanni, Hua Lin, Luis Zapata and Krishna Murari 5 Compact X-Ray Light Source 6 Overall Laser Layout ICS laser Seed source 200 MHz, 10 nJ, 2 W, 200 fs Single 2 mJ pulse at 1 kHz Pulse picker Yb-fiber laser front end Burst mode photocathode laser AOM selects 100 pulses at 1 kHz rep.rate Stretcher (~300 ps) Yb:KYW regen Single 100 mJ 3 ps pulse at 1 kHz Multi-pass Yb:KYW Gain 100 20 W, Yb:KYW short pulse 100 W, cryoYb:YAG Compressor FHG to UV in BBO 100 pulses, 250 nm 20 µJ, 150 fs Compressor 50 mJ 2 ps 515 nm pulse in 200 MHz ring down cavity for ICS 100 pulses 2 µJ 100 pulses 200 µJ, 600 fs Diode pump 940 nm SHG in linear cavity with dichroic mirrors Multi-pass Yb:KYW Gain 400 Diode pump 980 nm Cryo-Yb:YAG amplifier RF gun 50 mJ: Ringdown cavity! 7 Interaction Point 8 Linear Image Relay Cavity Lens Fused Silica Mirror SHG Crystal LBO IP Dichroic Mirror θ f1 f1 IR 2f2 Electron Beam 9 Key Laser Parameters § § § § § § IP beam waist is 3 microns Green pulse length is 2 ps Target conversion efficiency – 50% IR pulse energy 100 mJ Desired repetition rate for cavity is 5 ns or LTot ~ 1.5 m Damage threshold – 0.28 J/cm2 for 2 ps pulse 10 Cavity Loss § Lens, mirrors: <0.2% (single element) § SHG crystal: 0.25%~1% § Total cavity loss 0.5%~2% 11 Stability 2 § Stable if § For: § § § § ⎛ A + D ⎞ g = ⎜ ⎟ ≤ 1 2 ⎝ ⎠ f1 34.5 cm f2 3 cm L1 34.5 cm L2 34.5 cm L3 6 cm g=1 cavity is marginally stable Cavity round-trip length 150 cm Gaussian beam Analyze waist for some deviations. Aq + B q' = Cq + D 1 1 λ = −i q R π w2 12 Stability vs Pass Number § What if L2 and L3 vary? Marginal Stability L2 + L3 = f1 + 2 f 2 Stable L2 + L3 = f1 + 2 f 2 − 0.2 µ m Unstable L2 + L3 = f1 + 2 f 2 + 1µ m 13 Additional Cases Stable L2 + L3 = f1 + 2 f 2 − 0.5µ m Stable L2 + L3 = f1 + 2 f 2 − 1µ m 14 Timing Requirement § The accumulated phase difference between the cavity round trip time and the electron beam repetition rate should be held to a minimum. § Maximum acceptable 0.5 ps of accumulated offset § For 100 pump pulses the stability requirement is 1.5 µm Lock cavity to stable single-frequency laser < 1nm precision 15 B-Integral Calculation ICS cavity rep rate (MHz) Cavity length L (mm) Focal length f (mm) WSHG (mm) W0 (um) θ (deg) 200 750 181 6 5 1.88 LBO crystal: Laser parameter: Length (mm) n0 @ 515nm n2 (cm2/W) 3.15 1.6 3E-16 1030 nm input energy (mJ) Pulse duration (ps) SHG to 515 nm efficiency Cavity loss 100 2 50% 0.5% BSHG = 3 Btotal = 5 16 OXALIS Simulations - Input Source § § § § § E=100mJ Wavelength=1064nm Peak fluence=124 J/m2 Peak intensity=4.1e13 W/m2 Grid Size: Time(50pts), Space(128x128) Far Field Near Field 17 OXALIS Simulations Intensity of beam at the focus Far Field The shape remains same after each round trip Near Field 18 Cryogenic Yb:YAG operation - spectroscopy Energy Levels in Yb:YAG Yb:YAG Absorption Spectrum* Energy Laser: 1030 nm Pump: 940 nm 3kBT @ 300K, 9kBT @ 100K § § § § Absorption Coefficient (cm– 1) 10 8 Laser Wavelength 77 K 6 Pump Array 4 2 300 K 0 900 920 940 960 980 1000 1020 1040 Wavelength (nm) 4-level laser with small quantum defect Higher absorption coefficient ! ease of pumping Lower saturation fluence (~1.8 J/cm2) ! efficiency and low damage risk Improvement of thermo-optic-mechanical properties by about 100! CRYOGENIC OPERATION Enables efficient high-power lasers with near-ideal beam quality LN2 use: 6l / hour for 1 kW output spectroscopic properties measured by MITLL Pioneered by T. Y. Fan MIT LL 19 494-W Power Oscillator w. Rod-type Module Near-Field Profile at 275 W FiberCoupled Pump Laser LN2 Dichroic Dewar Mirror Yb:YAG Crystals Laser Output Polarizers High Reflector Output Coupler Output Power (W) 500 400 300 200 100 0 0 100 200 300 400 500 600 700 • • • • 494-W average power 71% optical-optical efficiency M2 ~ 1.4 @ 455 W (wavefront sensor) OC reflectivity = 25%, L = 1 m, Near-flat-flat resonator • Performance limited by available pump power Incident Pump Power (W) 20 Cryogenic Composite Thin – Disk Heat Laser 21 Cryogenic Composite Thin – Disk Cryogenic Yb:YAG CTD Angled kaleidoscope Heat Laser Features: • • • • • • Vacu um te lesco pe / s patia l Out " Strict image relay Smooth every transit Passive switching High gain High energy High power filter Mirror switchyard Thin-Film Polarizer " In 22 12-pass amplification architecture - key components Features: • Strict image relay • Smoothing with every transit • Passive polariza;on switching Vacu um te lesco pe / s patia l filter TFP 23 Cryogenic disks / hardware 24 ASE-control and gain hold-off “Bare” disk ◊ C7 § CTD1 C7 Composite disk with fashioned edges DRAMATIC INCREASE IN GAIN-HOLD REALIZED CTD1 25 Experimental results are close to expectations Gain-narrowing damage Beam quality at 60 mJ, 200 Hz ! • Damage sustained ~45 mJ • 200 ps pulse duration 26 Conclusion § Design, validation of high energy ring down cavity to meet CLS goals § Alternatively coherent built-up cavity in burst mode to reduce B-integral further § Cryogenic Yb:YAG are ideal ICS – lasers, becoming a mature technology § Cryogenic composite thin disk laser: High gain, high energy and power delivers easily 100 mJ, 1kHz pulses; Scalability to 1J, 1kW and beyond 27 Detailed Parameters Cavity Length (m) 1.50 Focal Length (cm) - f1 34.50 Focal Length (cm) -f2 3.00 3 Green w0 (microns) Green w1 on Lens (mm) 18.85 Green w1 on Mirror (mm) 3.28 Green Peak Surface Intensity (GW/cm^2) Green Peak Surface Field (GV/m) Green Energy (mJ) 50 Green Pulse width (ps) 2 Red w1 (mm) 26.66 Red Peak Surface Intensity (GW/cm^2) 26.15 Red Peak Surface Field (GV/m) 0.44 Red Energy (mJ) 100 Red Pulse width (ps) 2.83 SiO2 Lens Thickness (mm) 2.8 SHG - LBO Total Thickness (mm) 3.15 Surface Safety Factor 1.91 B-integral (SHG) 2.37 B-integral (Total) 5.29 Number of Passes 100 Loss 1% 73.9678 0.53 28 Optic Size § Lens will be 3 cm in radius with a notch for the x-ray beam § Angle of incidence (cut includes 10 mrad of clearance for x-rays): Notch width 7 mm § 40 mrad – 1.38 cm § 65 mrad – 2.24 cm § 90 mrad - 3.1 cm Edge Cut 29 ABCD Model f2 f1 L2=f1 L1=f1 L3=2f2 Unwrap L2 L1 f1 L3 L3 L2 f2 L1 f1 Dashed lines represent periodic boundary condition 0 ⎤ ⎡1 L ⎤ ⎡1 L ⎤ ⎡ 1 ⎡1 L1 ⎤ ⎡ 1 2 3 ⎢ ⎥ ⎢ 1 M = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 1 ⎣0 1 ⎦ ⎢⎣ f1 1 ⎥⎦ ⎣0 1 ⎦ ⎣0 1 ⎦ ⎢⎣ f 2 0 ⎤ ⎡1 L ⎤ ⎡1 L ⎤ ⎡ 1 0 ⎤ ⎡1 L ⎤ 3 2 1 ⎥ ⎢ ⎢ ⎥ 1 ⎥ ⎣0 1 ⎥⎦ ⎢⎣0 1 ⎥⎦ ⎢ 1 1 ⎥ ⎢⎣0 1 ⎥⎦ ⎦ ⎣ f1 ⎦ 30 OXALIS Simulations - Beam at the output Far Field Near Field 31 OXALIS Simulations Pulse evolution in first round trip Pulse parameters Output Energy at 515 nm (mJ) 38 LBO B-Integral (per pass) 0.0022 Peak Fluence(J/m2) 2e9 Average fluence(J/m2) 2.6e8 Peak Intensity (W/m2) 8.9e20 FWHM(µm) at focus 4 FWHM (mm) at the flat mirror 21.63 FWHM (mm) at the curved mirror 3.75 32 Overall Laser Layout Seed source ICS laser Yb-fiber laser (200 MHz) 1030 nm, 100 fs, 1nJ Fiber stretcher ~100 ps Single 2 mJ pulse at 1 kHz 200 MHz 2W Yb-fiber preamp 2W Pulse picker Photo-cathode laser Stretcher (~300 ps) Yb:KYW regen Single 100 mJ 3 ps pulse at 1 kHz AOM selects 100 pulses at 1 kHz rep.rate Diode pump 980 nm 100 pulses 200 µJ, 600 fs Diode pump 940 nm Compressor SHG in linear cavity with dichroic mirrors Multi-pass Yb:KYW Gain 400 100 pulses 2 µJ Cryo-Yb:YAG amplifier 50 mJ 2 ps 515 nm pulse rings down in 200 MHz cavity for ICS Multi-pass Yb:KYW Gain 100 Compressor FHG to UV in BBO 100 pulses, 250 nm 20 µJ, 150 fs RF gun 33 Wavefront quality was excellent at high power 34 Laser design demonstrated successfully • High gain from single disk ü Composite design ü ASE rejecting shape Heat • Beam quality at power ü Imaged multipass architecture ü Single 4-mm aperture ü 60mJ @ 200 Hz Laser 35 Thermobond, post-process inspection Version 1.0 Version 1.3 36 ELI Secifications and Deployment Phase 1: 1 mJ, 100 kHz, sub-7 fs (Quarter 3, 2015) Building ready in Oct. 2015, installation Q1, 2016 in Szeged Phase 2: 5 mJ, 100 kHz, sub-5 fs (Quarter 1, 2016) installation Q3, 2016 in Szeged Assuming a conservative conversion efficiency of 50% to green and 10% OPA/OPCPA efficiency to IR requires Phase 1: 20 mJ, 100 kHz, 2-5 ps, 2 kW pumps (Quarter 1, 2015) Phase 2: 100 mJ, 100 kHz, 2-5 ps, 10 kW pumps (Quarter 4, 2015) 37 Face-pumped composite-thin-disk • • • • • 1-D thermal distribution Low wavefront distortion Shape rejects ASE 92% absorption in double pass Simple gain-element fabrication inde x 38 Regenerative Amplifier To cryoamp. FM 1&2 Compressor G1 TFP M8 Eout Regenerative amp. G2 λ/2 FI RM M7 λ/4 PC TFP M6 M3 M4 M2 M 5 M1 S L DC XTAL Eseed Stretcher CFBG3 C3 FA2 CFBG2 C2 FA1 XTAL DC L CFBG1 LD λ/2 PBS L CFBG4 Osc C1 Eosc 39 Experimental results: Cavity-dumped Output energy at 1kHz [mJ] 5.5 5 4.5 4 3.5 3 80 90 100 110 120 Incident pump power [W] 130 140 Cavity dumped cavity λ = 1025 nm; Δλ = 2.3 nm GatePumpe = 450 µs frep = 1 kHz 40 Spectra and Autocorrelation Seeder Cavity dumped Regenerative amp. Intensity [A.U.] 1 0.8 FWHM FWHM 0.6 FWHM = 4.9 nm = 5.7 nm = 3.6 nm 0.4 0.2 0 1020 1025 1030 Wavelength [nm] 1035 1040 A.-L. Calendron et al., UP 2014 (submitted). 41 Regenerative Amplifer Stability 42 Cryo-YAG Power Amplifier Development Cryogenic Rod-Type Yb:YAG Laser Development at MIT – DESY Collaboration and its use for the Phase I effort 43 287 W Cryogenic Yb:YAG Amplifier CVBG stretcher 30-mW Yb-fiber preamplifier LN2 Dewar λ/4 PBS Yb-fiber oscillator (78 MHz) 0.8 mW 370 ps λ/4 λ/2 CVBG compressor L1 L2 DM Yb:YAG crystals DM L2 Fiber-coupled pump laser L1 F1029 FI λ/2 CM L3 λ/4 Telescop e 10-W Yb-fiber a mplifier λ/4 TFP PBS 287 W, 5.5 ps, 3.7 µJ@78 MHz λ/2 FR λ/2 PBS K.-H. Hong, et al, Opt. Lett., 33, 2473 (2008) K.-H. Hong, et al. Opt. Express. 17, 16911 (2009) 44 287-W Picosecond Amplifier Layout Yb:YAG Crystal LN2 Dewar ~1.5 L capacity Conflat sealed Ion pump for P<10-6 T 2% Yb:YAG Crystals M=4x 22.5o AR 940 nm HR 1030 nm 350 W 400 µm Thin Film Polarizers 287 W, 5.5 ps, 3.7 µJ, 78 MHz • • • λ/4 Mirror 4-W seed input; 700 W of pump power at 940 nm 1.5-mm diameter seed beam at crystals Double-pass amplification 45 High-energy ps cryogenic Yb:YAG laser at 1-2 kHz (c) Yb:YAG multipass amplifier LN2 Dewar L3 Yb:YAG crystals (b) RGA Yb:YAG crystal in LN2 dewar L1 L2 LD (350 W) L4 DM DM L4 L3 DM PC TFP TFP Telescope FI TFP (1) Telescope seed PBS (d) Multi-layer dielectric grating compressor G fs, Yb-fiber oscillator λ/4 Telescop e (2) (3) 40 mJ@ 2kHz 8.2 mJ@ 2kHz Telescope FI λ/4 TFP G LD (100 W) (1) ~15 ps, 6.5 mJ @ 2 kHz from RGA (2) ~32 mJ expected λ/4 CFBG stre tcher (a) Fiber seed 0.1 mW >400 ps FI λ/2 λ/4 10-mW Yb-fiber prea mplifier (1029 nm) K.-H. Hong, et al. Opt. Lett. 35, 1752 (2010) 46 Advanced Cryo-YAG Power Amplifiers Cryogenic Composite-Thin-Disk Yb:YAG Laser - Monolithic Array of Gain Cells for scaling Luis E. Zapata1,2 & Franz X. Kaertner1,2 Huseyin Cankaya2, Anne-Laure Calendron2, Hua Lin1, Kyung-Han Hong1 1Department 2Center of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, USA for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Hamburg, Germany. 47 1 Joule laser driver – Layout Cryogenic Yb:YAG 12-pass power amplifier Multi-layer-dielectric Compressor Cryogenic Yb:YAG 12-pass preamplifier Yb:fiber master oscillator Amplitude Yb:KYW regenerative amplifier Grating Stretcher 1.5 me ter 48 Problem reduced to one-dimension • Boltzman distributed energy levels • In equilibrium with the diode pumping… • …and their own radiation trasport Boundary conditions: • 1) x=0, Ip=0 • 2) at x=L/2, Ip = Im • Transcendental equation can be solved 49 Average gain-length, average seed In ΣCTD Iseed QD· Iabs· t 2 ⎛⎜ ⌠ π + δ ⌠ λ ⎞⎟ = ‒‒‒‒‒‒‒‒‒‒ · Ω( δ2, λ ) ≡ ⎮ ⎮ sin( θ) ⋅ cos ( θ) dθ dϕ ⎜ ⌡ ⎟ ⌡ 4·∙π ·∙ ∆Σ ⎝ π −δ −λ 2 ⎠ ΣTD Solid angle: λ is the longitude and δ the latitude 50 The composite-thin-disk advantage Laser Laser ü Added volume dilutes ASE Enables: Ø Larger aperture ü Resilience to n.a. deformations Ø Higher gain ASE go ( cm-‐1 ) go ( cm-‐1 ) 51 Gain narrowing after 6 passes Measurements vs. calculation 2 Dl (nm) 1.5 calculation 1 0.5 Low DF data 0 5 10 15 20 Multiplicative signal gain G 52 Bandwidth expected at average power: Temperature distribution in operation (500 W peak diode power, 20-30% DF ) 2 Dl (nm) 1.5 150 K 1 Expectation … 0.5 100 K Low DF Data 0 20 40 60 80 100 Multiplicative signal gain G 53 Beam quality • Beam profile after 6-passes shows modulations Ø concern ! Ø corrosion of coating during thermalcon may be the cause • Beam quality measurements with HASSO show good beam quality output Ø HASSO wavefront sensor does not detect high spatial frequencies Input amplitude beam After 6th pass (un-amplified) 54 Benefits of Cryogenic Cooling 100-K Yb:YAG 300-K Nd:YAG κ (in W/mK) 47 11 dn/dT(ppm/K) 0.9 7.9 α (ppm/K) 2.0 6.2 Relative FOMd 87 1 (300-K Nd:YAG = 1) (~100 K) Yb:YAG: improved power scalability, beam quality, and efficiency 87x increased power output per unit of wavefront distortion for power scalability with good beam quality Material thermo-mechanical and thermo-optical properties are better at 100 K than at 300 K High electrical-to-optical efficiency, low optical damage risk, four-level laser at 100 K High gain, low saturation intensity/fluence • note: modest LN2 requirements (requires ~ 6 l /hr at 1 kW ) 55 The cryogenic composite thin-disk laser improves the state of the art, and is based on advanced technologies fluence 1.8 J /cm2 Diode stack! Nonimaging concentrato r PUMP 1. Cryo-Yb3+:YAG Laser relay imaged, smooth 2. multi-pass extraction ASE Composite thin-disk ASE PUMP heat flow 3. Diffusion bonded-”CAP” 4. Bright diode stacks 5. Low thermal-impedance HR coating backplane chiller 6. *Heat-spreader+boiling heat transfer in liquid nitrogen is convenient and sufficient for many applications (~100 W /cm2 heat rejection) Higher average power (repetition rate) is only limited by the backplane cooler 56 Off-axis 4·f telescope, multiplexed geometry High performance coolers The composite-thin-disk advantage ü Resilience to deformations ü Added volume dilutes ASE 57 57 The composite-thin-disk advantage ü Resilience to deformations Enables: Ø Larger aperture ü Added volume dilutes ASE Ø Higher gain 58 58 Aspect ratio determines ASE performance All else remains 1-Dimensional 59 Cryogenic composite thin-disk technology 60
© Copyright 2024 ExpyDoc