7/29/2014 FKF FKF Electron Density Matrices Density matrices Γ, an alternative to the wavefunction Ψ, for the description of a quantum system Electronic Structure The N-particle density matrix Electrons in Momentum Space can be reduced to the 2-particle- Ulrich Wedig or to the 1-particle-level Max Planck Institute for Solid State Research - Stuttgart Dept. Quantum Materials / Takagi * → 1-particle properties ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 1 7/29/2014 FKF FKF Electron Density Matrices Electron Density in Position Space Electron position density ρ(r) and form factor F(χ) Interrelationships between various representations diagonal of the 1-particle density matrix ← ← momentum space → position space momentum space position space → X-ray diffraction FD 6D Fourier-Dirac transformation FD 3D Fourier-Dirac transformation P Projection into a subspace S Selection of a subspace ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig Wolf Weyrich Lecture Notes in Chem. 67 2 7/29/2014 FKF FKF Electron Density in Momentum Space Electron momentum density ϖ(r) and reciprocal form factor B(s) Compton scattering momentum space X-ray diffraction diagonal of the 1-particle density matrix position space projections parallel to the diagonal r into the subspace {s} orthogonal to r FD 3D Fourier-Dirac transformation P Projection into a subspace S Selection of a subspace ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig Electron Density in Momentum Space Electron momentum density ϖ(r) and reciprocal form factor B(s) Compton scattering momentum space X-ray diffraction X-ray diffraction and Compton scattering are complementary methods to get information about the 1-particle density matrix diagonal of the 1-particle density matrix position space projections parallel to the diagonal r into the subspace {s} orthogonal to r FD 3D Fourier-Dirac transformation P Projection into a subspace S Selection of a subspace ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 3 7/29/2014 FKF FKF Compton Scattering - Principles k1 Compton Profiles Projection of the electron’s initial momentum onto the scattering vector inelastic scattering of photons (X-ray, γ) p1 q k = k2 – k 1 p2 – p1 k2 p2 momentum transfer from photon to electron (energy and momentum conservation) Probing several directions yields information on the k1 wave vector of photon before collision k2 wave vector of photon after collision k = k2 – k1 scattering vector p1 electron momentum before collision p2 electron momentum after collision q projection of p onto k electrons at rest → Compton line Electron Momentum Density 02 1 h mec 1 cos moving electrons → Compton profile (Doppler broadening) The formula is valid within the impulse approximation - Energy transfer is much larger than the binding energy of the electron - Corrections for multiple scattering processes P. Eisenberger, P. M. Platzman, Phys. Rev. A 2, 415 (1970) ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 4 7/29/2014 FKF Compton Profiles Projection of the electron’s initial momentum onto the scattering vector FKF Computed Compton Profiles Directional Compton Profiles can be computed in two ways: 1) 2D-integration of the Electron Momentum Density π(p) Probing several directions yields information on the 2) Via the reciprocal form factor B(r) Electron Momentum Density In the AO basis set The formula is valid within the impulse approximation → synchrotron-, γ-radiation Beamline ID15B at ESRF, Grenoble ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 5 7/29/2014 FKF Computed Compton Profiles Directional Compton Profiles can be computed in two ways: FKF Computed Compton Profiles Directional Compton Profiles can be computed in two ways: BRG, interfaced to CRYSTAL98: A. Saenz, T. Asthalter, W. Weyrich, Int. J. Quant. Chem. 65, 213 (1997) 1) 2D-integration of the Electron Momentum Density π(p) 1) 2D-integration of the Electron Momentum Density π(p) Since CRYSTAL09: Keyword BIDIERD A. Erba, C. Pisani, S. Casassa. L. Maschio, M. Schütz, D. Usvyat, Phys. Rev. B 81, 165108 (2010) (use of corrected density matrices (MP2)) 2) Via the reciprocal form factor B(r) CRYSTAL: Keyword PROF 2) Via the reciprocal form factor B(r) In the AO basis set - analytical integration valence contribution only for molecules and non conducting polymers In the AO basis set - numerical integration dense k-mesh required ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 6 7/29/2014 FKF Computed Compton Profiles Hartree-Fock vs. Correlated wavefunction vs. Kohn-Sham Hartree-Fock: FKF Computed Compton Profiles Hartree-Fock vs. Correlated wavefunction vs. Kohn-Sham Hartree-Fock: Electron correlation is missing. → 1-particle density matrix is idempotent. eigenvalues (occupation numbers) of the spin-orbitals either 1 or 0 Correlated wavefunction: Electron correlation is missing. → 1-particle density matrix is idempotent. eigenvalues (occupation numbers) of the spin-orbitals either 1 or 0 Correlated wavefunction: → 1-particle density matrix is non-idempotent. eigenvectors (natural orbitals) and non-integer eigenvalues 0 < n < 1 → 1-particle density matrix is non-idempotent. eigenvectors (natural orbitals) and non-integer eigenvalues 0 < n < 1 DFT – electron position density minimizing the energy for a given functional Kohn-Sham: Total density is the sum of orbital densities (noninteracting electrons). The Kohn-Sham approach is incorrect for momentum related properties “correlated density” from “uncorrelated density matrix” DFT – electron position density minimizing the energy for a given functional Kohn-Sham: Total density is the sum of orbital densities (noninteracting electrons). → 1-particle density matrix constructed from KS-orbitals is idempotent. → 1-particle density matrix constructed from KS-orbitals is idempotent. Error in the kinetic energy term, compensated in the exchange-correlation functional Exc Corrections: L. Lam, P. M. Platzman, Phys. Rev. B 9, 5122 (1974) Error in the kinetic energy term, compensated in the exchange-correlation functional Exc Corrections: L. Lam, P. M. Platzman, Phys. Rev. B 9, 5122 (1974) Kohn-Sham: Kohn-Sham: ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 7 7/29/2014 FKF FKF Theory vs. Experiment We have to consider: Theory vs. Experiment We have to consider: - Spectrometer specific corrections - Spectrometer specific corrections - Corrections for multiple scattering expt. data - Corrections for multiple scattering expt. data - Deviations from the impulse approximation (photon energy) - Deviations from the impulse approximation (photon energy) - Limited resolution - Limited resolution if differences of directional CP (anisotropies in the EMD) Most effects are less relevant are examined. theor. data - 0K vs. finite temperature → statistically averaged density matrix (Alessandro Erba) ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig theor. data - 0K vs. finite temperature → statistically averaged density matrix (Alessandro Erba) ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 8 7/29/2014 An Example – CP of Zn and Mg FKF An Example – CP of Zn and Mg FKF Results from a project within the DFG priority program 1178: Results from a project within the DFG priority program 1178: Deviations from Ideal Structures in Metallic Elements and Simple Intermetallics: Combined Experimental and Theoretical Studies of Electron Distributions Deviations from Ideal Structures in Metallic Elements and Simple Intermetallics: Combined Experimental and Theoretical Studies of Electron Distributions J. Nuss, H. Nuss, D. Fischer, H. Schlenz, K. Friese, W. Morgenroth, Ch. Busch, Ch. Hauf, W. Scherer J. Nuss, B. Boldrini, Th. Buslaps M. Jansen, U. Wedig Stuttgart Electron density Momentum space W. Weyrich Konstanz Electron density Position space Experiments and Theory Momentum space Position space Experiments and Theory A. Kirfel B. Paulus N. Gaston, D. Andrae, E. Voloshina P. Sony, K. Rosciszewski Berlin U. Wedig, H. Nuss, J. Nuss, M. Jansen, D. Andrae, B. Paulus, A. Kirfel, W. Weyrich, Z. Anorg. Allg. Chem, 639, 2036 (2013) ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 9 7/29/2014 An Example – CP of Zn and Mg FKF FKF Anisotropies in the directional CP in the range of 0.1 Hexagonal close packed elements – unusual structures 1.9 Computed CP of Zn and Mg Cd Zn 1.8 + 9.3 % c/a ─ BIDIERD: TOLINTEG 42 10 10 10 15 vs. 16 24 16 24 32 ─ BRG: TOLINTEG 42 10 10 10 15 vs. 24 32 24 32 48 ─ BIDIERD vs. BRG: TOLINTEG 42 10 10 10 15 1.7 Crucial is the first parameter (ITOL1) in keyword TOLINTEG Mg overlap threshold for coulomb integrals 1.6 but also governs the truncation of the lattice sums with the construction of the density matrix 1.5 10 20 30 40 volume /Å3 50 60 70 anisotropic in-plane and out-of-plane bonding → tiny effects in the electron density Truncation errors may have the same magnitude as the physical effects Thanks to Alessandro Erba for valuable hints ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 10 7/29/2014 FKF Zn 7 x 3 x 0.7 mm (Z3M [001]) FKF Directional CP of Zn and Mg Anisotropy of the Momentum Density Mg 7 x 3 x 1 mm (M1M [423]) Samples: Single crystals, one for each direction sheets perpendicular to the scattering vector [423] direction 1 a.u. = 1 DuMond = ħ / Bohr Dispersion-compensating scanning spectrometer Beamline ID15B, ESRF, Grenoble Directions considered: • [100] ‘intraplanar bond’ • [423] ‘interplanar bond’ • [001] ‘nonbonding direction’ as reference ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig Experimental resolution: Zinc 0,07 – 0,09 a.u.; Magnesium 0.09 – 0.11 a.u. ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 11 7/29/2014 FKF FKF Anisotropy of the Momentum Density Comparing the ‘bonding directions’ [100] – [423] (B3PW) Anisotropy of the Momentum Density Comparing the ‘bonding directions’ [100] – [423] (B3PW) [423] [100] Zinc in momentum space: 4s2-valence shell: Reduction of the anisotropy (change of the Fermi surface) 3d10-shell: Enhancement of the anisotropy (dynamical correlation) ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 12 7/29/2014 FKF Anisotropy of the Momentum Density FKF The Method of Increments (MOI) for Metals Comparing the ‘bonding directions’ [100] – [423] (B3PW) The method of increments for metals Many-body expansion of the correlation energy per unit cell with E E HF E corr E corr i ij i i j ij ij i j i j k ijk ... etc. the indices i,j,k denote groups of orthogonal localized orbitals (e.g. atoms) in finite embedded clusters (i: unit cell; j,k: whole system) a proper embedding scheme allows for: Does the dynamical behaviour of the electrons govern the unusual structure of zinc in position space? -improved localizability -prevention of surface charging -a disappearing band gap Correlation treatment: CCSD(T) Zinc in momentum space: 4s2-valence shell: Reduction of the anisotropy (change of the Fermi surface) 3d10-shell: Enhancement of the anisotropy (dynamical correlation) ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig H. Stoll, Phys. Rev. B 46 (1992) 6700 B. Paulus, Phys. Rep. 428 (2006) 1 E. Voloshina, B. Paulus, SPR Chemical Modelling: Application and Theory 6, M (2009) ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 13 7/29/2014 Zinc, Cadmium – Cohesive Energies FKF Zn Zinc – Energy Landscape beyond DFT FKF Cd expt. -1.35 -1.16 MOI s2d10-correlation -1.35 -1.19 MOI s2-only-correlation -0.90 -0.67 DFT (LDA) -1.65 -1.46 DFT (PBE) -0.97 -0.69 DFT (B3PW) -0.82 -0.59 DFT (B3LYP) -0.28 -0.17 Correlation energy computed with the Method of Increments Phys. Rev. Lett. 100, 226404 (2008) 4s23d10-correlation only 4s2-correlation The bonding in zinc is exclusively due to dynamical correlation of the electron 3-body terms lead to different bonding interactions within und between the hexagonal planes. The closed 3d10-shell contributes significantly to the bonding. The cohesive energy is obtained quantitatively by the Method of Increments. (MOI: -1.35 eV; expt.: -1.35 eV) MOI: Method of Increments, values given for the expt-like minimum Phys. Rev. B 75, 205123 (2007) Phys. Rev. Lett. 100, 226404 (2008) Phys. Chem. Chem. Phys. 12, 681 (2010) ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig high pressure data: K. Takemura Phys. Rev. B56 (1997) 5170 A modification of zinc with an ideal c/a ratio may exist. ISAMS2014 Regensburg - 22nd Juli 2014 - Ulrich Wedig 14
© Copyright 2025 ExpyDoc