MATH 205 EXAM 2 7:15-8:15 pm, Thursday Variant A Ma.rch, 13, 2014 Nam Instructor: Section time:- No books or notes a,re a,llowed. Simple calculators are OK, but no smartphones. Circle your final answer. Show all work to get full credit. Arguments must be clear. K-state honor code: "On mg honor, as a student, I haue neither giuen nor receiued uno,a,th,ori,zed, aid, on this acttd,emic work." Equation of the tangent line: g: ft(a)(x - a) + f(a) (f(g("))'-- f'k@Dg'@) U @) g ("))' : ffi): Good luck! f' (") g(") + f (r) s' (r) f'@)s@) - f @)d@) (s@))' SCORE Total:100 #L #2 #3 Max 10 10 #4 #5 #6 #7 #8 10 16 18 T4 10 t2 1 (10 pts). Find the equation of the tangent line to the graph of the function Jlr) : c" at r: -L <'l -- (t/a) 4 fx- a ) + (ra'\ ct =-l { to't = 5-' = L, f- s)' l'/a..' € '/-,) = e^ a'tt € '(xt - 0^ u4nsoue-, pts). On the same axis sketch carefullg the graph of the derivative of the function given by the following graph. (1O o J ,7 / ' th 20-: J- \ -v\ \ \ 3 (16 pts). SHOW ALL THE WORK, GIVE FULL ARGUMENTS. For the ftrnction f (x) : 2ra - 8x a) Find a.ll critical points. ( ,= (2yt-gx)t= 8x3^8 x3- I =o x7= I F4 b) Identify each critical point as a local maximum, a local minimum or neither. (*1'= zv xZ |"U,)=e.V>o BA zn"l .(o.-;ro#'uc t<a*, itW | " c) Circle what test did you use: d) Find all inflection 1st derivative test points. N 'l ( ,t"d dd":I't".tilt}-\ *l '= o ZYxL=A { "r*) - /iz\ mn\ x=o c-laa'-'Z< < r?.". efaTlt^ poin*3 (10 pts). Suppose that Estimate /(30). /(l) is afunction with /(25) :4 and t'QS) f,(ro)= €ces) + €'lzs)'(<o2s) tt - o-l .t =[A = : -9.1. (18 pts). Find the derivatives of the following functions. Si,mphfu the answer and ci.rcle (5-1) it! (,): ,4 = x-{ f Er=:;3 L------'-=) (5-2) f(r):2'+In(r) =W;{4 f'r"t \---==-=-- (5-3) s(I): \F +r _L A'(+) =!(4'+t)'z' (ts4) rl\r ) : 312 3tz = e"" tn@) \n'lrt : 3 e"'l^ t-) (12 +31 (5-5) (ex':: sl - e-j (d+z) { i^\^ (e")z r't (5-6) I g(t): ,-4, 5'kt=# -l-+ -'{ +-b ( ,{+{.)2 .) (,t +t)2- (ta pts). sHow ALL THE WORK, GIVE FULL ARGUMENTS. a) Find the e - coordinate of the point of the global minimum for the {tnction f(r) :3r f on the intervil 7f2 < r < 314 f xa-l ftj+i ca.-0 gls: 31 3. (-'), =o x,2BoH^ poi't+1 a,.\9 Oqlsi& +-tq {tv-i= Lz 7 + 3.2-'- 6 , =t o,> 7.s <<- ^/o1 o-Q Va.Z.,r*q I +v:2-91 v=6'svn v F;a b) Find the z - coordinate of the point of the global minimum for the function f(r) :2r - ln(r) on the interval z > 0 Gra1,u,. o-{ { <>'1, 1'1 ,.' Glcr6^t al- $'(*t= ^l X =O ?x- x I= rzr,'r i r"r irzr,r-r'r oFe czui lt ca.! 3 vq is al)^l < "ao\ oi vt* pts). For q units of a product, a manufacture's cost is C(q) dolars and revenue is .B(q) dollars, with C(500) : 7200., n(500) : 9400, MC(500) : 15 and ME(500) :20. a) What is the profit or loss at q : 500? (1O Tf = Q(soot- Q{soo) = lYta- Tzo-p ={ Lze-o pto,fi+ b) If production is increased from 500 to 501 units, by approximately how much does profit change? _*tcCStto) 14 R /Soo> = f1 w&( 4 *2, 5 \ - *l-f= 3'q' 4 G4)= 3 '9r /.4 + .3 g[^g*^r* xL \ q*<.rwa,.Q x 9." o '= 5- d&ans. 8 (12 pts). Graph a function with a,ll of the following properties: (1) The first derivative ls positive everywhere and (2) The second derivative is positive for x > 2, is negative fot x < 2, and is zero at r:2. (r) tu) 7 (-u) ,1 I I
© Copyright 2024 ExpyDoc