2 Quiz# KEY Name: Prove theorem: T-6.3 (product of any two orthogonal matrices is orthogonal) 1. (ABthB) = dd,{s = B-tB *.7 are orthonormal) Prove theorem T-6.4 (Columns or rows of an orthogonal matrix 2. [ro"l Ls t ?l lnor- '(v,t''ltwe i CtTa, - brb -- CTc = cJb- *rc= |{ct 4076* Lrc*cr(=a Pgorrry | a,ue6,ui,ytrf {-tAn'F a rE, o *^ilul" ontLu^'o**Q M's U 3. Prove theorem T-6.5 (det(Rproper) d,"b s.^1yos€ iroa*fro$r* r det(Rimproper) : -1) 2 (Rtg = d,/f[Rt) /rtt(g) = Ai (&)'= d-'l(4 rd,rt[R)= (o f *n-: t\ :-rI, !\ R-= a,{r, [a\.6tt] t c u**l'*'uw"^--A ueg'hP *W{t"l'6ta*t])= : *f 1**$1) * dd{fot6ld't I ta tr" I s xal) I = Page 2 4. Prove theorem T-6.8 (If R is orthogonal 3 by 3 matrix then (HINT: suppose (Ra)x(Rb): (R'lx(R4)= R(axb), -R (Ra)- = RdRr is proper orthogonal) ((1*{) 4tut,M ?^*U/-r% = RGd) ea)(na1 of1 4 re ffiln = Ra ffi* Raf 5 . [- Prove that rot(k, * &im{?) = ft,* ,I + sin(p) E + (1 fi-cdDY) - cos( g17 8' is a proper orthogonal matrix fflrl- e : 71o s 4,r 71 " Je 6. cp) Prove ?"'k' =" &' + rl,n^(r) Wfti ,, -c^@)i'/e er e irr^ce L ** +l ro* f e,v) il f rof tr(rot(k,9) : I+2cos(rP) air*(v)fr * t"{roCfi,,p}+r I t u ' ] =* 5?"t*))'fr f t **f*)) *.te&r* r 3 + t **t*) Frfd- : i :,:*?;?'lggi 7. Derive rotation matrix R F= rd+fes, y)= if k= e3, (p :60u lr^,r.-Qrru,f r) = -"f :t*; =, ,l [t -E + z a'^rc) o1 ?rll= l9 L ?l i"*v ehY e L0 L;; ffi CS656,Qtiz#2 8. Paee 3 Given are vectors b by 450: s : s:lI,4,2lr to* (*, and b: [0,3,01t . Find vector c which results from rotation of a about ,., t)q, Find ft and cp ,d= Iqt l; f =r*'f(e*,',s)o'= , 9. [3] hr fil= u' Elrrr c, llq l= I'{-l o I Ett.l L+ bEO which correspond to the rotation oer'(f)= 36 o $lz -!? Lo tlz '1312 o =l -R -- o 1 a+,tn\Y = ?6 --cr^Y | yo+(u,v) = l" Yn wl to 'nn\ t ? k= lrl= 10. [ matrix 0 [l e 8l l.Ar/ a -t^ 1=3U Find the rotation matrix which corresponds to rotation about x-axis by 600, followed by rotation about z-axis by 900 lot[?r,q, rot (t,, no) : ? -E ?] L l= -to][r [o o?il, i; [o o rll.ut of7 L] -i io os-l lr o lu e i I I CS656, Quiz #2 0.8910 T_ ttr 6B I 1. Given is a homogeneous transform matrix: 0 01 0.4540 0 -0.4s40- 1 0 3 0.8910 0 Find its inverse (HINT: Consider the rotation part of Z orthogonal) T=. I {n^q Tir s- HJ: r'Ir -f r rl ft l-:r| t-' I F= Gl '--r Ld\\l 'l f$il:$rq- foT'' [;r I JI ; :U:l i *Yfti: i--o*Y?,o. o t> t $ lt ;$]:il] ; o D I [jl, l-D t l2.FindHTmahixwhichmovJvectoragivingvector b(b=Th),whereaandbaredefinedasinfigure 4l fr &= lr' f4r r(h,r){= L x b T ds 450 t: I'l q lEj 2l 6\tre I 3l L;J t Write the operator equation first, then expand the matrices, then multiply the ' = Trc*rrnQ,,- [r o 0 -1 I lv I o o LE T: I;Bt w rite R"+ @t,-4s")") I €: e" Ie lz EJ) 2 Lo 2_ dO {-a the screw matrix for x-axis with rotation 300 and translation 10 mm ft"t (r,,i{ 1; q'u) (3,,t) = \ o O rol o E- -i 0 o! I e o o a lJ | I ,.\ -'{ | ",1=[l-tr trt2 ol I2lo ol il Lf :tilt I fuelql la-- ls e s'Jt | t3. a) . !:,i: H Lo ,-T I ro et J---t ll rl '| ffi l Page 6 CS656, Quiz #2 14. Given is vector v : [5 6 Tlr.Express v in terms of basis vectors {:5 ei+ €1, €2 illld of7 €3' GQy+1ez 15. Given are fivo matrices: o .l [r o R,=rot(u,a)=10 0.9397 lo os4zo -0.3420 | e848 ol 0 0'1736 o, = rot(v,p)=lo'sa+t | fo.tzro [ o o.%sl) -0 o l.l (a) Find vectors u andv, and angles aand B' tA = Br Cr4t4 = a.q3q7 l\f; €g errfs) = 6'tv?b o{= Zoo f1 = 8o" i (b) Suppose that the two matrices represent basis vectors of two coordinate systems, { 1} ald {2} , : ' ' respectively. Given is vector t*:1L2,0.75,4.01r defined in {1}, find the same vector'x defined in rx, .R1 an R2), then compute the numeric (in terms of 1Zi. Writeihe solution in generic iorm first solution (you may use MATLAB for this). \ R,tx = ri' R.?X tx= nln\ x W PageT of7 C5656, Quiz #2 16. system by 300, then about z-axis by Suppose an object rotates about x-axis of the World coordinate 60". (a) What would be the equivalent angle of rotation? po{ [ee, Tt= C,rrY = to) bt (e,,3 o) = : i] f+ fr -E;u 'l[ ,i tl utl'F-:l=\+ f il lA t; o rJL"i EJ [o L Vl +'tR)-l_* t*€.-€-J 2- tf=. & hf/vJ = 3{3.3= v,'Eqs -r' 8 (o,3cas)= 1,tffir cod= 60'45' (b) Would the equivalent angle of rotation be the same if the two rotations took place in reversed order fiustify your answer)? *l&o' ouu€ 1l- roul.{ {^-n*Lq {t { * B) = ft (BA ) /a-r JL*,k,n : h (ro't(er,6o) rot( g,,ir) :
© Copyright 2024 ExpyDoc