Forerunner simulation and sensitivity tests for typhoons using ADCIRC 13th IMUM for coastal, shelf, and global ocean dynamics 25-27 August 2014 Lisbon, Portugal SeungWon Suh, Kunsan Nat’l Univ., Korea HwaYoung Lee HyeonJeong Kim 0 Background Surge height, ~ 1 - 2 m Occurs prior to main surge, 12h - 24h Due to geostrophic effects, Ekman setup, size of wind field etc. FS = fn of (geostrophic parameter, Vs, R, Ds, ...) (Kennedy et al., 2011; Hope et al., 2013; Sebastian et al., 2014) LATEX along GOM, hurricanes Rita(2005) & Ike(2008) caused forerunner surges (FS) WCK in YS, typhoons Prapiroon(2000) & Bolaven(2012) yielded FS 1 Previous studies Kennedy et al.(2011); Hope et al.(2013); Kerr et al.(2013); Sebastian et al.(2014) Using ADCIRC+unSWAN FS analyses for LATEX in Gulf of Mexico by Hurricane Ike Large wind field, Ekman setup (approximately geostrophic balance between the Coriolis force acting on the along‐‐shelf current and the across shelf pressure gradient) resonant time ~12 hr(oscillations) Bertin et al.(2012) Using SELFE+WaveWatch III FS analyses in Bay of Biscay indueced by storm Xynthia Ekman setup, young wind-wave, oscillations resonant time ~6 hr caused 10-20% of peak surge 2 Purposes To enhance near real-time forecasting of storm surges including FS Sensitivity tests on FS = fn of (geostrophic parameter, Vs, R, Ds, ...) FS analyses for shallow macro-tidal coast along (WCK) in perigean spring tide To test YS semi-diurnal tides dominances and resonant time ≈ 12h effect on FS To find FS similarities or differences between GOM and YS 3 FS along WCK, YS - Bolaven(TY1215) 24 hr 20 hr 18 hr 14 hr 4 Grid refinement NWP-G57k NWP-G116k Grid Resolution 5 NWP-G258k Comparison of grid refinement - results NWP-G57k NWP-G116k NWP-G258k RMSD(m) 0.3092 0.3397 0.3228 SI 1.7039 1.7861 1.7401 RMSD(m) 0.2377 0.2119 0.2153 SI 1.7266 1.7221 1.7007 RMSD(m) 0.1891 0.2207 0.2056 SI 1.6932 1.7676 1.6994 RMSD(m) 0.1742 0.1718 0.1865 SI 1.5626 1.5496 1.5639 RMSD(m) 0.1696 0.1676 0.1660 SI 2.0959 2.0850 2.1197 Incheon Gunsan outer port Mokpo Heuksando Seogwipo 6 Geostrophic setup effect in GOM Coriolis setup effects in FS parallel flow along LATEX coast (Kennedy et al., 2011; Hope et al., 2013) Landfall -24 hr Ike Only tide 7 Geostrophic setup effect along WCK in YS Macro-tidal area, strong tidal currents flood tide could increase FS ebb tide decrease Landfall -12 -24 hr Prapiroon Surface elevation and Wind vector Tide+Typhoon Tidal current vector Recursive currents 8 Only tide Effects of Ds (separation distance) - GOM, Hurricane Ike Best track EC2001 grid 9 Effects of Ds -YS, Typhoon Bolaven Change of forerunner surge Best track Forerunner surge (m) 10 Analyses of FS for hypothetical storm Bolaven Bolaven track + Ike Prapiroon Prapiroon track + Ike Historical TY track with Ike characteristics Pc, Rmax, Vmax, etc. Prapiroon Bolaven Pc (hPa) 975 982 Ike 951 Radius (34 kt, km) - 74 56 Vmax (m/s) 31 28 49 11 Analyses of FS for hypothetical storm SH ~ 5-6 m FS ~ 2 m depending on Ds, track routes 12 Wave effect ADCIRC+SWAN Without wave Difference With wave 13 Wave effect (red solid line: forerunner surge time, black dashed line: landfall time, black arrow head: pass through time) 14 Bottom friction effect 0.005 (red solid line: forerunner surge time, black dashed line: landfall time, black arrow head: pass through time) 15 Bottom friction – sensitivities Chezy Eq. H Cz = n 1 6 g gn 2 Cf = 2 = 3 Cz H Manning’s n: 0.02~0.025 ± 0.005 Main surge (m) 0.02-0.025 Forerunner surge (m) 0.02-0.025 + 0.005 + 0.005 - 0.005 - 0.005 Incheon Incheon 1.07 0.50 0.96 (-10%) 0.45 (-9%) 1.24 (+16%) 0.54 (+9%) Gunsan outer port Gunsan outer port 0.65 0.43 0.56 (-13%) 0.39 (-9%) 0.75 (+17%) 0.45 (+6%) Mokpo Mokpo 0.61 0.31 0.57 (-6%) 0.29 (-6%) 0.64 (+6%) 0.33 (+5%) Heuksando Heuksando 0.56 0.34 0.56 (-) 0.33 (-3%) 0.56 (-) 0.35 (+2%) Seogwipo Seogwipo 0.46 0.29 16 0.47 (+3%) 0.29 (-) 0.45 (-3%) 0.29 (-) Vortex shape effects (red solid line: forerunner surge time, black dashed line: landfall time, black arrow head: pass through time) 17 Vortex shape effects Gridded wind vel. & pressure (NWS=6, RDAPS) Asymmetric vortex (NWS=9) Symmetric vortex (NWS=8) Dynamic asymmetric vortex (NWS=19) RMSD(m) 0.3092 0.3565 0.3751 0.3074 SI 1.7039 1.7553 1.8088 1.6198 RMSD(m) 0.2377 0.2608 0.3087 0.3144 SI 1.7266 1.7014 1.8605 1.9786 RMSD(m) 0.1891 0.2253 0.2369 0.2825 SI 1.6932 1.5945 1.6901 1.9440 RMSD(m) 0.1742 0.2861 0.2457 0.2392 SI 1.5626 1.7679 1.6122 1.7765 RMSD(m) 0.1696 0.1669 0.2398 0.2310 SI 2.0959 2.0943 2.4872 2.4615 Incheon Gunsan outer port Mokpo Heuksando Seogwipo Peak forerunner surge Incheon m Gunsan outer port % m % 0.61 Mokpo m % Observed 0.47 0.38 NWS=9 0.49 -4 0.42 -31 0.31 -18 NWS=8 0.12 -74 0.1 -84 0.08 -79 NWS=19 0.12 -74 0.17 -72 0.14 -63 NWS=6 (RDAPS) 0.40 -15 0.42 -31 0.27 -29 RDAPS(KMA): Regional Data Assimilation and Prediction System 18 Vortex effects - sensitivities 19 FS depending on main force term 20 Results of FS tests Primary factor is vortex size, bigger size causes higher FS Vortex size ± 20% causes 67~-56% Slow Vs (-20%) cause 9% of FS height Major forcing on FS; Wind 91%, Coriolis f 35% Typhoon Bolaven peak forerunner surge Gunsan outer port Incheon Mokpo Best track(NWS=9) m 0.49 % - m 0.42 % - m 0.31 % - Moving spd-20% 0.52 6 0.5 19 0.32 3 Moving spd+20% 0.48 -2 0.36 -14 0.3 -3 Wind field-20% Wind field+20% 0.23 0.82 -53 67 0.15 0.75 -64 79 0.15 0.48 -52 55 Vmax-20% 0.6 22 0.5 19 0.34 10 Vmax+20% 0.58 18 0.53 26 0.37 19 Tide off 0.43 -12 0.33 -21 0.31 0 Coriolis off 0.35 -29 0.22 -48 0.22 -29 Wind off 0.01 -98 0.02 -95 0.06 -81 Pressure off 0.50 2 0.42 0 0.29 -6 21 Results of SH Primary factor is Cp Vortex size is insensitive Slow Vs cause decrease of SH Major forcing on SH; Wind 56%, Coriolis f 34% Typhoon Bolaven peak surge Gunsan outer port Incheon Mokpo Best track(NWS=9) m 1.07 % - m 0.64 % - m 0.61 % - Moving spd-20% 0.97 -9 0.77 20 0.53 -13 Moving spd+20% 1.14 7 0.57 -11 0.88 44 Wind field-20% 1.08 1 0.64 0 0.63 3 Wind field+20% 1.07 0 0.75 17 0.59 -3 Vmax-20% 1.04 -3 0.62 -3 0.61 0 Vmax+20% 1.07 0 0.68 6 0.63 3 Tide off 0.98 -8 0.51 -20 0.57 -7 Coriolis off 1.2 12 0.65 2 0.56 -8 Wind off 0.28 -74 0.35 -45 0.31 -49 Pressure off 0.76 -29 0.42 -34 0.38 -38 22 Geophysical similarity effects on FS FS = F of (geostrophic parameter, Vs, R, Ds, ...) GOM vs YS LATEX vs WCK Ike, Rita vs Bolaven, Prapiroon Similarity? Differences? 23 Yellow Sea vs Gulf of Mexico 24 Yellow Sea vs Gulf of Mexico Typhoon Bolaven Hurricane Ike Cp (hPa) 982 951 Radius (34 kt, km) 74 56 Vmax (m/s) 28 49 YS GOM WCK LATEX Area (km2) 427,000 1,568,684 64,752 89,680 Volume (km3) 16,795 7,738,239 2,064 7,297 Avg. depth (m) 40 1,490 50 145 Width length (km) 490 870 200 200 Coast line length (km) 6,800 6,210 2,686 742 - 0.17~0.28 (Mixed, mainly semidiurnal) 1.5~2.6 (Mixed, mainly diurnal) Form factor - 25 Comparison of tidal environment Form factor Tidal station 26 WC LATEX 0.17~0.28 (Mixed, mainly semidiurnal) 1.5~2.6 (Mixed, mainly diurnal) Comparison of topography - YS vs GOM N N 6 7 4 1 2 5 3 Sea bottom slope Average Depth (m) Maximum Depth (m) 7 5 4 6 3 2 West coast(Yellow sea) 1 LATEX(Gulf of Mexico) West Coast of Korea (WCK) LATEX 0.0003 50 110 0.004(A: 0.0005) 145 1430 A 27 Comparison of resonant period Yellow sea Gulf of Mexico 3 L = 82 km Tn = 4L n gh L = 820 km g = 9.8 m/s2 H = 60 m T1=37.8 hr T3=12.6 hr L = 185 km g = 9.8 m/s2 H = 30 m T1= 11.9=12 hr Moon et al.(2003) Hope et al.(2013) average L= 185 km LATEX 28 Comparison of bottom materials mud and sand dominant Manning’s N 0.012 ~ 0.025 Yellow sea Gulf of Mexico http://csdms.colorado.edu/wiki/DBSEABED http://gulfatlas.noaa.gov 29 Hurricane vs Typhoon characteristics Ike, Rita vs Prapiroon, Bolaven Vmax Vs Cp R34 30 Summary and Conclusion FS characteristics along WCK in YS Efficiency ↑ with unstructured grids; dense nodes in shallow coast Vortex shape affects to FS, asymmetrical shape > symm Ds ↑ causes FS ↑, max. SH ≈ Wave coupling ↑ 0.1 m of FS Bottom friction ↑ FS 6%, max. SH 8% ↓ Bottom friction ↓ FS 6%, max. SH 9% ↑ FS, SH depend on tidal current Resonant time ≈ 12h affects to FS Geostrophic setup effect : WCK ≠ LATEX recursive tidal current ≠ uni-directional wind induced flow 31 Ekman setup effect behaves differently due to macro-tidal environ. Ds, Vs, vortex shape are important factors in FS analyses Proper bottom friction coeff, wave coupling are essential in FS analyses FS should be incorporated in near real-time forecasting of SH Studied further on similarities between GOM and YS 32 Thank you 33
© Copyright 2025 ExpyDoc