Synchronization - clock and data recovery

Wide-Bandwidth Interface Circuit Design
Clock and data recovery
Hung-Wen Lin
[email protected]
YuanZe University
Department of Electrical Engineering
Clock and Data Recovery (CDR)
Noisy data
Clean data
Decision circuit
D Q
CDR
Optimum
sampling
Threshold of
Decision circuit
Din
CKout
t
General considerations
‧CDR must output a frequency (CKOUT) equal to the data rate
‧CDR must generate a certain phase relationship with respect to data
allowing optimum sampling (usually the midpoint) of the bits by the clock
‧CDR must exhibits small jitter to reduce the jitter of retimed data
WBIC
Clock and Data Recovery
2
Clock and data recovery architecture
PLL-based data recovery
VCO
Up
Din
PD
CP
LPF
Dn
Dout
Oversampling-based data recovery
PLL
Din
WBIC
OverSampler
Optimum
phase
Dout
Clock and Data Recovery
3
Edge detection for data (1)
Differentiation
d (...)
dt
H (s) = s
怎麼對資料作微分?
dDIN
D (t ) − DIN (t2 ) DIN (t1 ) − DIN (t2 )
⇒ IN 1
=
dt
t1 − t2
∆t
Circuit implementation example
Din
Din
Δt
A
Vout
Δt A
Din
Din
A
Vout
Din
Δt
Vout
Δt A
Vout
Din
Din
A
A
Vout
Δt
Vout Δt
WBIC
Clock and Data Recovery
4
Edge detection for data (2)
XOR
XOR
DIN
VO
Δt
A
Ab
Ab
A
B
Bb
B
Bb
DIN’
VO
DIN
DIN
∆t
∆t
DIN’
XOR
A
Ab
DIN’
B
WBIC
XOR
Clock and Data Recovery
Bb
5
Edge detection for data (3)
‧Delay time of XOR is critical
DIN
VO
Δt
DIN
DIN’
DIN’
‧Delay circuit : level shifters
VO
t
Short delay time
VO
DIN
DIN
∆t
∆t
DIN’
DIN’
DIN
DIN’
VO
t
Long delay time
WBIC
Clock and Data Recovery
6
Edge detection for data (4)
I1+I2
VO
VI
ID1
VIB
I1
VA
ID1
VB
M1
A
I1
B
CD
I2
s rO CD
A
CD
B =
rO 1 + s rO CD
Source coupled pair with capacitive degeneration
Each rising edge at the gate of M1 momentarily turns M2 off, allowing both I1
and I2 to flow through M1 , VB then falls at a rate of I2 /CD until M2 turns on
WBIC
Clock and Data Recovery
7
Edge detection for clock (1)
CK 1
CK 2
VPD (t ) = sin(ωC t + θ 1 ) × sin(ωC t + θ 2 ) = sin(2ωC t + θ 1 + θ 2 ) + sin(θ 1 − θ 2 )
VPD
∫
(t ) =
nTCK
0
VPD (t ) dt
nTCK
可偵測相位誤差,輸出平均
值與相位差呈線性關係
= sin(θ 1 − θ 2 ) = sin ∆θ ∝ ∆θ
只在小信號
底下成立
io = g m v in
VO
io = g m v in1 v in 2
vin
vin2
vin
vin
vin 2
WBIC
Clock and Data Recovery
8
Edge detection for clock (2)
CK 1
CK 2
V PD (t )
∆φ ≈ 0
V PD (t )
∆φ ≈ π / 2
CK1
CK2
V PD (t )
−π
0
∆φ = φ 1 − φ 2
∆φ ≈ π
π
∆φ ≈ −π / 2
CK1
CK2
V PD (t )
WBIC
Clock and Data Recovery
9
Edge detection for clock (3)
Re cov ery clock
Random data
CK 1
CK 2
DIN
CK
V PD (t )
VOUT (t ) = ∑ an sin(ω D ,n t + θ D ) × sin(ω CK t + θ CK )
≠0
sin[(ω D ,n + ω CK ) t + (θ D ,n + θ CK )] 
= ∑ an 

+
sin[(
ω
−
ω
)
t
+
(
θ
−
θ
)]
D
,
n
CK
D
,
n
CK


VOUT
≠0
VOUT
Data lags clock
∫
(t ) =
N TB
0
VOUT (t ) dt
N TB
無法偵測資料與時脈
的相位誤差
Data leads clock
DIN
DIN
CK
CK
VOUT
VOUT
WBIC
≈0
Clock and Data Recovery
10
DFF Phase detector (1)
‧Data samples clock
- DIN and CK are swapped, each rising edge of DIN samples CK
- If DIN lags CK,DFF outputs a positive pulse
- If DIN leads CK,DFF outputs a negative pulse
VOUT
Bang-bang PD
CK
D Q
VOUT
Δφ’ = φD – φCK
VOUT
DIN
Δφ = φCK – φD
CK
CK
DIN
DIN
VOUT
VOUT
WBIC
Clock and Data Recovery
相位誤差與輸出值
為非線性曲線!
11
DFF Phase detector (2)
Half-wave rectification
CK
D Q
VOUT
CK
DIN
DIN
dDIN
dt
H
Full-wave rectification
D Q
CK
DIN
CK
VOUT
DIN
dDIN
dt
DIN
D Q
WBIC
Clock and Data Recovery
12
CDR circuit using DFF PD
Decision circuit
D Q
At lock condition
DIN
CKO
CDR
D Q
DIN
WBIC
DO
LPF
VCO
CKO
D Q
DO
Clock and Data Recovery
13
Nonidealities of CDR (1)
Feedthrough path1
LPF
D Q
• Data-to-VCO feed-through
should be avoided
CKOUT
VCO
Feedthrough path2
DIN
D
M1
WBIC
M2
DOUT
Decision
circuit M
1
Din
Feedthrough
path1
Din
Phase
detector
Q
M3
Clock and Data Recovery
M2
Feedthrough
path2
M3
14
Nonidealities of CDR (2)
D Q
∆t
DIN
LPF
CKO
VCO
∆t
CKO’
D Q
Data-Q
Q
DOUT
Optimum sampling
Actual sampling
CK-Q
DIN
CKO
∆t are caused by difference between CK-to-Q and Data-to-Q
WBIC
Clock and Data Recovery
15
Phase detector for random data (1)
DIN
DIN
VO
Δt
A
A
VO
Δt
• Edge detection : a pulse for each data transition.
DIN
VO
DIN
CK
B
CK
DO
B
VO
• Linearly phase difference : VO contains pulses whose width varies linearly with
the phase difference between DIN and CK
Average of VO is linearly proportion to the phase difference
‧Data is retimed inside PD
DO
WBIC
Clock and Data Recovery
16
Phase detector for random data (2)
• However, Average of VO is a function of data transition density
Different phase errors may result in the same DC output
Higher phase error
Lower transition density
DIN
B
CK
Lower phase error
Higher transition density
VO
DIN
DIN
DO
CK
B
VO
CK
B
VO
• To overcome the above ambiguity, the proportional pulse is accompanied
by reference pulses (next page), which appear on data edges but exhibit
a constant width to eliminate the pattern dependency (Transition density)
Hogge PD
WBIC
Clock and Data Recovery
17
Hogge PD (1)
Y
IP
VO
B
X
DIN
D Q
D Q
• ∆Y : difference between transition of DIN
and rising of CK
• ∆X : constant difference of TCK /2
• Linear PD
A
IP
CK
鎖定時, ∆Y佔1/2資料週期,CK
上升緣直接取樣資料中心
DIN
DIN
CK
CK
B
B
A
A
Y
X
VO
WBIC
∆Y
Y
∆X
X
No data
transition
∝(∆Y – ∆X)
VO
Clock and Data Recovery
∆Y
∆X
No data
transition
18
Hogge PD (2)
DIN
Y
IP
VOUT
B
X
DIN
D Q
CK
D Q
CK
B
A
∆Y
Y
A
IP
∆X
X
VOUT
Ripple
I P TCK
⋅
CP 2
• At lock condition
∆Y = TCK / 2 , ( ∆Y – ∆X ) = 0
Falling edge of CK is adjusted to align transition edge of DIN
TCK /2 skew between X and Y causes a triangular ripple at VOUT for each data
transition
noise of VCO (key drawback of hogge PD)
WBIC
Clock and Data Recovery
19
Nonidealities of Hogge PD (1)
Din
Δt
Y
B
FF1
DIN
CK
D
Q
D
X
Q
A
CK
B
Y
∆φ
∆t ∆φ
∆t
‧Due to CK-to-Q delay of FF1, B is delayed by ∆t, yielding a wider pulse
at Y than the phase difference (∆φ ) between DIN and CK
‧Reference pulse at X remains the same TCK /2
At steady state, DIN and CK sustain a skew of ∆t
WBIC
Clock and Data Recovery
20
Nonidealities of Hogge PD (2)
‧Insert a DFF-like delay cell (Δt =CK-to-Q)
VOUT
Δt
Y
B
DIN
DIN
D Q
DIN
D
Q
X
A
CK
DIN
‧Widen the reference pulse by ∆t
Inserting a delay stage at A
CK
B
B
Y
A
A’
Match
DIN
DQ
DQ
Δt
A’
A
Y
X
CK
X
WBIC
Clock and Data Recovery
21
Modified Hogge PD
CK
DIN
D Q
DIN’
V1
D Q
V2
D Q
D Q
V3
V4
Charge pump
Original Hogge PD (+A)
VCP
–A
DIN
CK
D1
D2
D3
D4
V1
V2
V3
V4
VCP
+A
–A
+A
–A
‧Additional XOR and Latch create negative triangular pulse ( –A ) offset by
TCK and with respect to the original pulse
Produce a zero offset at VCP
VCO phase is lowered
WBIC
Clock and Data Recovery
22
CDR using Hoggle PD
Din
IP
Y
CK
B
Din
FF
FF
D Q
D Q
X
A
IP
VCO
Vout B
RP
CP
C2
Y
A
X
- Under locked condition, X and Y both contain a pulse width of TCK /2
- Require a very board bandwidth at X and Y to ensure complete switching of
the charge pump and avoid a dead zone.
WBIC
Clock and Data Recovery
23
Alexander Phase Detector (APD)
Data transition occurs in negative
half period (180° ~0°)
Data transition occurs in
positive half period (0° ~180°)
DIN
DIN
CK
CK
180°
0°
180°
0°
180°
0°
DIN
D Q
Q1
Q2
CK
FF
WBIC
Q3
D Q
Latch
180°
0°
180°
φCK – φD = ∆φ < 0
CK Lead DIN
DIN
D Q
0°
CK Lag DIN
FF
D Q
180°
Falling edge of clock ( φCK ) lags
transition edge of data ( φD )
Rising edge of clock ( φCK ) leads
transition edge of data ( φD )
Falling edge of clock ( φCK ) leads
transition edge of data ( φD )
Rising edge of clock ( φCK ) lags
transition edge of data ( φD )
φCK – φD = ∆φ > 0
FF
0°
180°
Q4
Q3 Q1
Q1
Q2 Q3
CK
Clock and∆φ
Data
> 0 Recovery
, CK Lag DIN
DIN
Q2
CK
∆φ < 0 , CK Lead DIN 24
Timing diagram of APD
DIN
FF
D Q
CK
D Q
FF
Lag
FF
Q1
Q3
D Q
D Q
L
Q2
Q4
Lead
DIN 1 2
2
DIN 1
5
3
4 5
CK
CK
1
Q2
Q3
∆φ
φCK – φD = ∆φ > 0
3 4
Q1
Lead – Lag
φCK – φD = ∆φ < 0
Q4
3
5
Q1
1
3
Q2
2
3
5
1
3
2
4
Q3
4
2
1
4
Q4
Lead
Lead
Lag
Lag
‧APD is a bang-bang system, exhibiting a high gain in the vicinity of ∆φ =0
‧APD provides inherent data retiming
WBIC
Clock and Data Recovery
25
APD V.S. DFF PD
CK
D Q
DIN
CK
VOUT
DIN
FF
D Q
CK
Lag
FF
Q1
D Q
Q2
Lead
3 4
D Q
FF
Q3
D Q
L
Q4
DIN 1 2
CK
DIN
Q1
VOUT
Q2
Q3
• APD is better than DFF PD
- W/o data transition, APD outputs a zero DC
less ripple in VCO control.
- Inherent data retiming
• Gain of APD is a function of data transition density
WBIC
Clock and Data Recovery
5
Q4
1
3
5
1
3
2
4
2
4
Lead
Lag
26
APD implementation
Din
D Q
D Q
Q1
CK
D Q
FF
Lag
FF
FF
Q3
Lead
Q2
D Q
L
Q4
D Latch
XOR
Q
D
CK
WBIC
VOUT
A
A
B
Clock and Data Recovery
B
27
CDR using APD
• Compare to Hogge PD (Linear PD), APD (Bang-bang PD) don’t use narrow
pulse and high speed switches to drive CP
V/I has a lower BW requirement
‧As CDR is locked…
- XOR experiences metastable level at Q3 and Q4 at most of the time
- Falling edge of CK is aligned to transition edge of DIN
- Produce a valid data waveform at Q1 and Q2
DIN
DIN
CK
CK
DQ
DQ
Q3
DQ
V/I
VCO
LP
Q2
DO1
Q4
DO2
L
Lag
DIN
WBIC
DQ
FF
lock
CK
Q1
Lead
V/I
(Lead – Lag) in current domain
Clock and Data Recovery
28
CK頻率 = 0.5 X 資料速率
ex.0.5HGz
1Gbps
Half-rate PD (1)
‧CDR may sense full-rate random data but employ a half-rate VCO
‧Relax the BW requirements of VCO and DFF
‧Data transitions may be detected if both edges of the half-rate clock are utilized
to sample the input data, here duty cycle distortion of clock is a key issue
Latch1
DIN
DQ
A
∆φ
CK
DQ
B
Sense Hold Sense Hold Sense Hold
Latch2
1. 一邊固定為初值, 另一邊則允許輸入
何時輸入改變, 會直接傳遞至XOR輸出
2. DFF1 hold /DFF2 sense 偵測CK負半週是否發生資料轉態
DFF1 sense /DFF2 hold 偵測CK正半週是否發生資料轉態
3.系統最終會鎖定在∆φ全為1或全為0的狀態
WBIC
Hold Sense Hold Sense Hold Sense
∆φ
Clock and Data Recovery
29
Half-rate PD (2)
L1
DIN
DQ
VOUT
A
CK
VOUT
DQ
B
TB
0
2
T
T
∆φ ≈ ± B or CK
2
4
−
L2
∆φ ≈ 0 , ∆φ > 0
TB
2
∆φ = φCK − φD
∆φ ≈ 0 , ∆φ < 0
DIN
DIN
DIN
CK
CK
CK
實線sense A
虛線hold B
A
A
B
B
VOUT
VOUT
VOUT
WBIC
Clock and Data Recovery
30
Linear Half-rate PD
L1
D Q
DIN
L3
A
D Q
C
Do1
CK
B
D
D Q
D Q
L2
L4
Vout
If DIN has a transition,
C⊕
⊕D generate a pulse
width of TCK /2
DIN
CK
Do2
C
D
C
D
假如AB發生轉態,那CD會產生一
個週期的”−1”
VOUT
Vref
TCK
2
DIN
VOUT
TCK
4
CK
−π
A
C
B
D
0
π
−
π
π
2
0
2
• If CK edge is to strobe the data in the middle
of the eye, then A⊕B is TCK /4
A⊕B
o1
C⊕D
WBIC
o2
o3
o4
r1
r2
r3
o5
r4
• C⊕D needs to be halved to equal TCK /4
r5
• Half-rate PD retimes & DeMUX DIN
Clock and Data Recovery
31
Half-Rate Early-Late PDs
DIN
DQ
A
X (Lead)
.A /B /C without retiming latch
Metastable
Skew (A-B, C, Lead-Lag)
Y (Lag)
CKI
CKI
DQ
CKQ
DQ
C
CKQ
B
DIN
retime
CKI
A
CKQ
B
DIN
A
B
C
A
B
C
C
metastable
CK取樣轉態
中的資料
A⊕B
• Like APD, it’s a bang-bang PD
• CKI is used to track the edge of data eye B ⊕C
• CKQ is used to sample the middle of data eye
•.A /B /C need additional retiming latches before they applied to XOR
WBIC
Clock and Data Recovery
32
Frequency detector for random data
‧FD generate an output whose average represents the polarity and the
magnitude of frequency difference.
Mixing and Differentiation for Frequency Detection
x1 (t ) = A1 cos ω1t
x2 (t ) = A2 cos ω2 t
LPF
d(...)
dt
XO(t)
A1 A2
[cos(ω1 + ω2 )t + cos(ω1 − ω2 )t ]
2
A1 A2
 A1 A2

(ω1 − ω2 ) × sin(ω1 − ω2 )t
X O (t ) = 
cos(ω1 − ω2 )t  ' = −
2
 2

x1 (t ) x2 (t ) =
∆ω is AM-modulated in XO(t)
X O (t ) = 0
WBIC
fails to detect the frequency difference
Clock and Data Recovery
33
Quadricorrelator as a frequency detector (1)
Periodic CK2 X2, I
比較兩個clock
X1(t)
Periodic CK1
LPF
XA
X2, Q
LPF
d(...)
dt
XB
X A (t ) = A1 cos ω1t × A2 cos ω2 t =
XC
LPF
XO(t)
A1 A2
cos (ω1 + ω2 ) t + cos (ω1 − ω2 ) t 
2
dX A (t )
A1 A2
=−
(ω1 − ω2 ) × sin (ω1 − ω2 ) t
dt
2
A1 A2
X B (t ) = A1 cos ω1t × − A2 sin ω2 t =
sin (ω1 + ω2 ) t − sin (ω1 − ω2 ) t 
2
2
dX A (t )
 A1 A2 
X C (t ) =
X B (t ) = − 
(ω1 − ω2 ) sin (ω1 − ω2 ) t sin (ω1 − ω2 ) t

dt
 2 
WBIC
Clock and Data Recovery
34
Quadricorrelator as a frequency detector (2)
Periodic CK2 X2, I
LPF
X1(t)
Periodic CK1
XA
X2, Q
LPF
d(...)
dt
XB
XC
LPF
XO(t)
2
2
AA 
Last page⇒ X C (t ) = −  1 2  (ω1 − ω2 ) sin (ω1 − ω2 ) t
 2 
2
AA 
=  1 2  (ω1 − ω2 ) cos 2 (ω1 − ω2 ) t − 1
 2 
2
AA 
⇒ X O (t ) =  1 2  (ω1 − ω2 )
 2 
WBIC
當CK1與CK2的頻率接近時,我們需要
非常低截止頻慮(高成本)的濾波器
Clock and Data Recovery
35
Quadricorrelator as a frequency detector (3)
Periodic CK 2 CKI
LPF
Periodic CK1
X1(t)
XA
d(...)
dt
XC
CKQ
LPF
XB
XO (t)
d(...)
dt
ω1 − ω2
X A = A1 cos ω1t × A2 cos ω2 t = A1 A2 cos (ω + ω ) t + cos ∆ω t  ⇒ dX A = − A1 A2 ∆ω × sin ∆ω t
1
2

2 
dt
2
X B = A1 cos ω1t × − A2 sin ω2 t = A1 A2 [sin(ω + ω ) t − sin ∆ωt ] ⇒ dX B = A1 A2 ∆ω × cos∆ωt
1
2
2
dt
2
2
2
dX A
dX B
A
A
 A1 A2 


XO =
XB +
XA = 
∆ω sin 2 ∆ω t + cos 2 ∆ω t =  1 2  ∆ω

dt
dt
 2 
 2 
(
)
輸出端可省去低通濾波器
WBIC
Clock and Data Recovery
D
36
Frequency Detector (1)
Under-sample
fCK2 < fCK1
CK1
XA
DQ
180°
對ck2來說,ck1
一直往前走
0°
CK2 / CK3
fCK3 > fCK1
對ck3來說,ck1
一直往後走
Over-sample
0
1
2
3
4
5
6
7
8
9
10
11
.9
.0
CK1
.0
.1
.2
.3
.4
.5
.6
.7
.8
CK2
.0
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
CK3
WBIC
CK1
1
2
3
4
5
6
7
8
CK2 = 1.1×CK1
1.1
2.2
3.3
4.4
5.5
6.6
7.7
8.8
9.9 11.0 12.1
CK3 = 0.9 × CK1 0.9
1.8
2.7
3.6
4.5
5.4
6.3
7.2
8.1
Clock and Data Recovery
9
10
9.0
11
9.9
37
Frequency Detector (2)
DQ
CKI
fCK < fD
XA
取樣的速度比較快,會感覺被取樣的往後退
CKI
DIN
CKQ
Δt
CKQ
DQ
XB DIN
XA
CK Q
XA : 0
XB : 1
XA : 1
XB : 1
fCK > fD
XB
4
3
fCK > fD
2
1
4
取樣的速度比較慢,會感覺被取樣的往前走
CKI
2 1
CK I
3 4 f <f
CKQ
CK
D
CK I
XA : 0
XB : 0
XA : 1
XB : 0
CK Q
WBIC
DIN
XA
4
2
1
XB
Clock and Data Recovery
38
Frequency Detector (3)
3 2 1 4 3 2 1 4
CK Q
XA : 0
XB : 1
XA
XA : 1
XB : 1
fCK > fD
2 1
CK I
4
3
fCK < fD
CK I
XA : 0
XB : 0
XA : 1
XB : 0
fCK < fD
XA lag XB
取樣到0代表參考時脈頻率
太低,要加速
XB
3 4 1 2 3 4 1 2
XA
fCK > fD
XA lead XB
XB
DIN
CKQ
XB
D Q
CK Q
CKI
VO
XA
D Q
D Q
VO
fCK – fD
• Rising edge of XB(t) are used to sample XA(t)
-VO is high for fCK > fD , VO is low for fCK < fD
• Overall FD exhibits a bang-bang characteristic
WBIC
Clock and Data Recovery
39
Frequency Detector (4)
• If fCK – fD is too large ( > fCK /4 ), FD will fail to lock.
XA : 0
XB : 1
CK Q
2 1
3 4
CK I
XA : 0
XB : 0
( fCK
CK Q
WBIC
Nonideal
f CK
2
CK I
VOUT
f CK
4
fCK – fD
XA : 1
XB : 0
1.2
− fD ) ≈
fCK
4
2 1
3 4
Ideal VOUT
XA : 1
XB : 1
( fCK
− fD ) ≈
2
fCK
4
2 1
3 4
Clock and Data Recovery
( fCK
fCK – fD
f CK
4
f CK
2
− fD ) ≈
3
fCK
4
2 1
3 4
40
Full-rate referenceless CDR
DOUT
DOUT
PD
DIN
LPF1
PD
DIN
Loop2 : PLL
VCO
CKQ
CKI
FD
D Q
D Q
D Q
Course
VCO
LPF
Loop1 : FLL
CKQ
CKI
FD
Fine
D Q
D Q
D Q
LPF2
‧FD produces a DC level that drives VCO frequency toward data rate
‧When fCK – fD falls within the capture range of Loop2, PD takes over
• Loop1 and Loop2 may interact heavily that CDR fails to phase-lock
Improved by decomposing VCO control into coarse (Narrow BW, LPF1)
LPF1
and fine (Wide BW LPF2)
LPF2 inputs
• Short-term spectral lines close but unequal to data rate may confuse FD
• In phase-locked state, bang-bang FD still produce extraneous pulses
BW of FLL is typically much smaller than of PLL
WBIC
Clock and Data Recovery
41
CDR with coarse and fine VCO control (1)
Loop 1 : PLL
fCK
Up
DIN
PD
DOUT
fREF
PD
Dn
CP&LPF1
Vfine
‧VCO2 is a replica of VCO1, and is
frequency locked to N× fREF which is ideally
equal to input data late
VCO1
Vcourse
Up
Dn
CP&LPF2
Loop 2 : FLL
1/N
‧R/C at Vcourse reduce the noise form loop2
to loop1
VCO2
‧Loop1 phase-locks VCO1 to DIN through Vfine
ripple on Vfine induce a lower jitter at DOUT
‧ Loop1 must achieve sufficiently wide capture range to guarantee lock
Inevitable random mismatches between VCO1 and VCO2 lead to a
substantial center frequency mismatch
Incoming data is not exactly equal to N× fREF
Crystal oscillator may suffer from an error of 5~10ppm
‧VCO1 and VCO2 operate at different frequencies pull each other through VDD
improved by using differential swings for both VCOs
WBIC
Clock and Data Recovery
42
CDR with external reference (1)
1.First enables loop2 and lock the oscillator to N× fREF
2 Disabling loop2 and enabling loop1 when ∆f = | fB – fREF | drops to a sufficiently
small value (within the capture range of loop1)
loop1
3.loop2 activated again if loop1 loses lock.
‧Charge injection and clock feedthrough of switches must be examined carefully
‧Charge sharing between CP1 and CP2 heavily disturbs the VCO controls
‧Compared to CDR with 2X VCOs
- W/o mismatch and frequency pulling
effect between VCOs
- W/o course and fine controls
DIN
DOUT
Loop 1 : PLL
Up
PD
Dn
CP1
LPF
LPF
fREF
PFD
CP2
fB
VCO
Loop 2 : FLL
1/N
Lock detector
WBIC
Clock and Data Recovery
43
CDR with external reference (2)
DOUT
Up
PD
DIN
Dn
CP1
LPF
LPF
FREF
PFD
VCO
RP
CP
CP2
fB
C2
RP
CP1
S1
C2
CP2
Lock detector
1/N
• C2 in LPF attenuate the transition noise from PLL to CDR, generally C 2 < 0.2 C P
• Damping factor of PLL : ς =
RP
2
‧ PLL and CDR require different ζ
WBIC
I P C P KVCO
2π N
variable CP
Clock and Data Recovery
44