Security and Sensitivity of Space Time Communications Alfred O. Hero Dept. EECS University of Michigan - Ann Arbor [email protected] http://www.eecs.umich.edu/˜hero Collaborators: D. Bliss (MIT-LL), K. Forsythe (MIT-LL), T. Marzetta (Lucent-BL), M. Godavarti (Altrabroadband, Inc) Outline 1. Wireless network models 2. Performance metrics: capacity vs security 3. Information security: LPD/LPI-constraints 4. Environmental sensitivity 1 2 HT E = 4 si1 si2 θ11 θ21 θ31 θ12 θ22 θ32 3 5 yi1 ; yi2 ; si3 ; i = 1; : : : ; T i = 1; : : : ; T Eavesdropper Receiver Y Transmitter 2 HT R = 4 h11 h21 h31 T =coherent fade interval M=number of transmit antennas N=number of receive antennas ηr ; ηe = receiver SNR’s h12 h22 h32 = pη SH e T E + WE , (T 3 5 N) i = 1; : : : ; T xi1 ; xi2 ; Client Receiver p X = η SH r T R + WR , (T N) Receiver Model Received signal in l-th frame (t = 1; : : : ; T ) l l [xt1 ; : : : ; xtn ] = pη[sl t1 2 ;:::; l ] 6 stm 6 6 4 hl11 .. . hlm1 or, equivalently X l .. . hl1n .. . hlmn 3 7 7 l l 7 + [wt1 ; : : : ; wtn ]; 5 p l l l = ηS H + W X l : T N received signal matrices Sl : T M transmitted signal matrices N l H : i.i.d. M N channel matrices Cl N (0 IM IN ) N l W : i.i.d. T N noise matrices Cl N (0 IT IN ) ; ; 2 Source T x M matrix a(t) A/D Space S(t) Time Encoder demux RF Mod RF Mod Transmitter RF Demod RF Demod Codeword ^ S(t) Estimator Space Time Decoder D/A mux RF Demod Receiver T x N matrix Figure 2. Space-time transmitter/receiver. 3 ^a(t) Space-Time Coding Block coding: string L codewords over L frames j S1 j S2 j j SL j where Sl ’s are selected from a symbol alphabet S Cl T M Random Block Coding: coder generates Sl at random from S according to probability distribution P(S) 2 P . Objective: Find optimal distribution P(S) over P to: – maximize avg. information rate (achieve capacity) C = max E [ln P(X jS)=P(X )] P(S) – maximize sequentially-decodable rate (achieve cut-off rate) Ro = max E [expf ND(S1 kS2 )g] P(S) Transmitter constraints: average power, peak power, other? 4 Coherent Transmission and Reception − T/R know channel 40 M=32 M=16 M= 4 M= 1 35 30 b/s/hz 25 20 15 10 5 0 −10 −5 0 5 SNR (dB) 10 15 20 Figure 3. Capacity for informed transmitter and receiver (IT-IR). 5 Effect of Incoherent Transmission 1 0.9 0.8 C/C o 0.7 M=32 M=16 M= 4 M= 1 0.6 0.5 0.4 0.3 −10 −5 0 5 SNR (dB) 10 15 20 Figure 4. Capacity loss due to uninformed transmission (UT-IR). 6 Effect of Training Errors (coherent transmission): T =128 train 1 0.9 C/C o 0.8 0.7 M=32 M=16 M= 4 M= 1 0.6 0.5 0.4 −10 −5 0 5 SNR (dB) 10 15 20 Figure 5. Capacity loss due to T/R channel estimation errors. 7 Link Capacity: avg power constraint: tr(E [SS† ]) Po (1): Informed transmitter (IT) and informed receiver (IR) capacity: # " C = E sup log P(X jS; H )=P(X jH ) PS " ln IN + ηHΣH † # = TE = i h + † T E ln IN + ηHΣpow H = T ∑ E (log µλi ) sup Σ:trfΣgPo Capacity achieving source S N (0 ; Σpow = UDU † ; λi = eigs ηHH † IT NΣ i pow ) D = diag (µ 1=λi ) + µ : tr(Σpow ) = Po 8 IT-IR Link d1 e1 source Serial-toParallel U eM Temporal encoder dM Spatial encoder Figure 6. Optimal STC for informed-transmitter informed-receiver 9 Waterfilling solution 120 100 1/lambda(i) 80 60 40 mu=34 Power=sigma 20 0 0 5 10 15 20 Mode index i of H HT 25 30 35 Figure 7. Waterpouring solution for power-capacity achieving mode allocation(N = M = 32) 10 (2): Uninformed transmitter (UT) and IR capacity C = sup E [log P(X jS; H )=P(X jH )] PS = = where η 0 sup Σ:trfΣgPo i h T E ln IN + ηHΣH † i h 0 T E ln IN + η HH † = ηPo =M Capacity achieving source S N (0 ; cIT where c = Po =M 11 OI M) UT-IR Link 1 e1 source Serial-toParallel eM Temporal encoders 1 Figure 8. Optimal STC for uninformed-transmitter informedreceiver 12 (3): UT-UR: H unknown to either T/R C3 = max E log PX jS (X jS)=PX (X ) PS Capacity achieving source S VΛ where *Λ: non-negative T M block-diagonal matrix *V : unitary T T matrix *Λ and V independent * Λ† Λ = Po 13 UT-UR Link λ1 e1 source Serial-toParallel V eM Temporal encoder λM Spatial encoder Figure 9. Optimal STC for uninformed-transmitter uninformedreceiver 14 Channel Sensitivity Rank One Specular Component Pre-Processing 1 Post-Processing 1 Pre-Processing 2 Post-Processing 2 Received Information Information to be Transmitted Post-Processing N Pre-Processing M M-Transmit Antennas Independent Paths (Possibly over time) N-Receive Antennas Figure 10. Diagram of a multiple antenna communication system 15 Rician Channel Model Combined Rayleigh and Specular Multipath Fading: H= p p r G+ r H 1 m – Gmn are i.i.d. C N (0; 1) – Hm deterministic matrix such that trfHm Hm† g = NM – r fraction of channel energy devoted to specular component – Hm known to both the transmitter and receiver – G not known to the transmitter After unitary spatial transformation at T/R: Hm = [D; 0] 16 Rician Capacity: Rank one Hm known to T/R 2 Hm = p p 6 6 NM eM eTN = 6 4 3 NM .. . ::: . 0 .. . 0 ::: 0 .. 7 7 7 5 UT-IR Capacity: CH = max T E log det[IN + ηHΛ l ;d (l ;d ) where 2 Λ (l ;d ) H †] =4 3 M (M 1)d l1†M 1 l1M 1 dIM 1 5 d is a positive real number such that 0 d M =(M l is a complex number such that jl j 17 q M (M 1 d )d 1) Optimal UT-IR Rician Link d U M-1 e1 source Serial-toParallel eM M-(M-1)d Temporal encoder uM Spatial encoder Figure 11. Optimal STC for Rician uninformed-transmitter informed-receiver 18 1.4 1.2 dB = 40 1 dB = 20 0.8 d dB = 0 0.6 dB = −20 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 r (fraction of energy in the specular component) 0.8 0.9 1 Figure 12. Numerical optimization yields l = 0 and values of d shown as a function of r for different values of ρ. 19 Channel Sensitivity: Physical Scatterers ray 2 ray 1 L e2πi[dRx m (n)+dTx m (n)] =∑ dRx ;m (n)dTx ;m (n) n ; Transmitter Hm;l ; Figure 13. Physical point scattering model. 20 Receiver Median Eigenvalues (dB) IT Capacity Ratio (a) 0 16x16 Rand 16x16 8x8 4x4 2x2 -10 -20 -30 2 4 6 8 10 12 14 16 (b) 2 1.5 1 0.5 0 -20 -10 2 0 a Po (dB) 10 20 Figure 14. Eigenvalue dsn and capacity ratio (a2 = trfHH † g) 21 Median Eigenvalues (dB) (a) 0 -10 8x8 Rand 100/L 2 10/L 2 1/L 2 -20 -30 1 2 3 4 6 7 8 (b) 1.5 Capacity Ratio 5 100/L 2 10/L 1/L 2 IT 1 2 UT 0.5 -20 -10 2 0 a Po (dB) 10 20 Figure 15. Median eigenvalue dsn and capacity ratio 22 Channel Sensitivity: Interference Hypothesis: Strong random interferers Informed Transmitter (IT) and Informed Receiver (IR) " C = TE # sup Σ:trfΣgPo log IM + ηH 1 1 (I + R) 2 Σ(I + R) 2 H† Uninformed Transmitter (UT) and IR h C = T sup Σ:trfΣgPo E log I + ηH 1 1 2 2 (I + R) Σ(I + R) H† i Where R is N N interference spatial covariance matrix at receiver 23 8 (a) No Interferer 6 4 2 MIMO 8 × 8 to 1 × 8 Capacity Ratio 0 -20 -10 0 10 20 8 (b) Interferer Power = 20 dB 6 4 2 0 -20 -10 8 6 Random IT 0 Random UT Dense IT Dense UT Sparse IT Sparse UT 10 20 (c) Interferer Power = 40 dB 4 2 0 -20 -10 0 2 a Po (dB) 10 20 Figure 16. Spectral efficiency ratio for 8 x 8 system 24 Spectral Efficiency (b/s/Hz/M) 5 4 3 2 1 0 -10 -5 0 5 10 a 2Po (dB) 15 20 Figure 17. Normalized capacity for no interferers, cooperative interferers, and un-cooperative interferers. 25 I I T I H TR I R I H TE E Figure 18. Wireless network with eavesdropper 26 Information Security: Eavesdropper Resistance Hypotheses: 1. Subscriber links have informed transmitters/receivers (IT-IR): HT R is known to both parties over a hop Training generally required to learn channel Feedback required to inform transmitter of channel 2. Eavesdropper link has uninformed transmitter (UT) HT E unknown to transmitter S, HT E may be known or unknown to eavesdropper Modulation type, signal constellations, source density, may be known to eavesdropper 27 Eavesdropper Performance Measures 1. Pe eavesdropper error rate for detecting known signal S = s on link PF e = P(Λ > γjS = 0); PM e = P(Λ < γjS = s) 2. PF , PM = 1 PD : eavesdropper error rates for detecting any activity on link PF e = P(Λ > γjS = 0); PM e = P(Λ < 3. Ce = maxPS I (S;Y ): eavesdropper link capacity e (K ): eavesdropper symbol intercept error rate 4. Psde e e = P(Sˆ 6= S) Psde 28 γjS 6= 0) Computational Cutoff Rates Ro (H ) = max PSjH ln ZZ S1 ;S2 2Cl T M dPSjH (S1 )dPSjH (S2 ) e 1. T/R Informed cutoff rate: H known to both T/R η † D(S1 kS2 ) = tr H (S1 S2 )† (S1 4 2. R informed cutoff rate: H known to R only η D(S1 S2 ) = ln IT + (S1 k 4 S2 )(S1 3. Uninformed cutoff rate: H unknown to either T/R S2 )H S2 ) † † † η IT + 2 (S1 S1 + S2 S2 ) D(S1 S2 ) = ln r † † IT + ηS1 S1 IT + ηS2 S2 k 29 ND(S1 kS2 ) LPI: Uninformed Eavesdropper Lockout Capacity Lock out condition: Ce = 0 Note: lock out occurs if transmitted signal constellation fSi g satisfies: Si Si† = A; 8i Examples: Doubly unitary codes (T M): 3 2 Si† Si = IM ; Si Si† = 4 IM O O O 5 Instances – Square unitary codes (T = M): 30 Si Si† = Si† Si = IM = M = 2): – Space time QPSK: Quaternion codes (T S 8 2 < 1 4 = : 0 3 0 5; 1 2 4 3 j 0 5; j 0 2 Constant (spatial) modulus (CM) codes (T 4 3 0 1 5; 1 0 = 1): Si = [S1i ; ; SMi ] trfSi Si† g = kSi k2 = 1 Note 1: Q. How much subscriber capacity does lockout cost? A. Dimensionality analysis (T = M ): Constraint Si Si† = A reduces coding d.f. by factor ρ= M (M + 1)=2 M2 31 1 = 2 2 4 0 j 39 j = 5 0 ; LPD constraints The eavesdropper must make a decision between Xi = Wi ; H0 : i = 1; : : : ; L H1 : Xi = Si Hi + Wi ; i = 1; : : : ; L His minimum attainable detection error probability has exponential rate 1 lim inf ln Pe L!∞ L ρ = ρ = 1 inf lim ln α2[0;1] L!∞ L Z fH11 α (X ) fHα0 (X )dX ρ is Chernoff error exponent (ρ 0) ρ is minimal α-divergence between densities fH Chernoff exponent is achieved for Bayes test 1 32 and fH0 SH-informed Eavesdropper When eavesdropper knows transmitted sequence S = s = fs1 ; : : : ; sL g and channel sequence HT E = fH1 ; : : : ; HL g H0 : S = 0; H1 : ρ = S=s 1 L lim ∑ ρ(Hi ; si ) L!∞ L i=1 where ρ(Hi ; si ) = η2e trfsi Hi Hi† s†i g: 4 33 LPD transmitter strategy: Attain E [maxP(S) ln P(X jHT R ; S)=P(X jHT R )] subject to constraint on LPD (ρ) When Hi = HT E are i.i.d. Rayleigh channels: η2e E [trfSi Si† g]: 4 ρ= Relevant LPD constraints on Transmitter are: Peak power constraint: trfsi s†i g Popk Average power constraint: o n tr E [Si Si† ] 34 Po S-Informed Eavesdropper When eavesdropper knows S, but not H, α-divergence is ln Z f1 α (X jS = s) fHα (X jS = 0)dX 0 L = ∑ ln jI i=1 jIT + ηe si s†i j1 T + ηe (1 α α) si s†i j Asymptotic development: ln jIT + ηesi s†i j1 jIT + ηe (1 α α) si s†i j = α(1 α)η2e 2 35 trfsi s†i si s†i g + o(η2e ): Low SNR scenario Low SNR representation for the Chernoff error exponent ρ= η2e 1 L trfsi s†i si s†i g + o(η2e ): ∑ 8 L i=1 Transmitter Strategy: Attain E [maxP(S) ln P(X jHT R ; S)=P(X jHT R )] subject to either Peak 4-th moment constraint: trfsi s†i si s†i g P4pk ; Average 4-th moment constraint: trfE [Si Si† Si Si† ]g P4avg ; 36 Uninformed Eavesdropper When eavesdropper knows neither S nor H H0 : S = 0; H1 : S 6= 0 α-divergence not closed form Multivariate Edgeworth expansion of f (X jS 6= 0) ln = ln Z f1 α (X jS 6= 0) f α (X jS = 0)dY 1 α IT + ηe SS† IT + ηe (1 + α)SS† α(1 α)2 η2e σt ;u κt ;u;v;w (X )σv;w + o(η4e ) 8 37 (1) κr;s;t ;u (X ) is received signal kurtosis and σt ;u κt ;u;v;w (X )σv;w 2 = ηe 3N T M ∑ ∑ cov(skt ; sku )cov(skt sku ; skv skw )cov(skv ; skw ) k=1 t ;u;v;w=1 Observe Skewness of X is always zero for Gaussian channel Kurtosis tensor product depends on 4th moment of source: cov(skt sku ; skv skw ) = E [skt sku skv skw ] First term in (1) dominates for low SNR 38 E [skt sku ] E [ skv skw ] 0 Uninformed Eavesdropper: Low SNR ρ = = min α2[0;1] α)η2e α(1 2 trfSS† SS† g + o(η2e ) η2e trfSS† SS† g + o(η2e ) 8 Transmitter strategy: Attain E [maxP(S) ln P(X jHT R ; S)=P(X jHT R )] subject to trfSS† SS† g P4avg Equivalent to constraining S to Gaussian source with trfSS† SS† g P4avg =3 39 LPD-constrained Capacity Proposition 1 The LPD-constrained capacity Clpd for the T/R informed link is 2 0q i h Clpd = T E ln IM + ηr HΣlpd H † = T E 4log @ 1 + µλ2i 2 13 A5 NΣ Attained by S N (0 IT lpd ) Σlpd = UDU † , D = diag(σi ), ; q σi = µ > 1=λ2i + µ 1=λi 2 0 is a parameter such that ∑i σ2i = P4avg . 40 ; (2) Note: eigenstructure of Σlpd is matched to modes of H. power-optimal waterpouring solution is not LPD-optimal q n o M tr fE [SS† SS† ]g tr E [SS† ] Conclude: kurtosis constraint also constrains avg power However: kurtosis constraint produces qualitatively different optimal source distribution. 41 Optimal Covariance Eigenspectra: SNR =20(dB), M=32 0.06 0.05 spectrum 0.04 0.03 Power−optimal LPD−opimal 0.02 0.01 0 −0.01 0 5 10 15 20 eigenvalue index 25 30 35 Figure 19. Optimal source spectra: SNR = 20dB; M = N = 32 42 LPD: Tradeoff Study Define i h † Ic (Σ) = T E ln IM + ηr HΣH 1. IT-IR LPD-Capacity IP4avg (Σlpd ) 2. Loss in power-constrained capacity due to LPD constraint IPo (Σlpd )=IPo (Σpow ) (3) 3. Loss in LPD-constrained capacity due to power constraint IP4avg (Σpow )=IP4avg (Σlpd ) 43 (4) Informed Transmission and Reception − LPD−Capacity 40 35 M=32 M=16 M= 4 M= 1 30 b/s/hz 25 20 15 10 5 0 −20 −15 −10 −5 0 5 10 mean−squared power (dB) 15 20 Figure 20. IT-IR LPD-constrained capacity (N = M) 44 Loss in Power−Capacity due to MS Power Constraint 1 0.9 0.8 0.7 C/Co 0.6 0.5 0.4 0.3 M=32 M=16 M= 4 M= 1 0.2 0.1 0 −20 −15 −10 −5 0 5 mean power (dB) 10 15 20 Figure 21. Loss in power-capacity due to LPD constraint (N = M) 45 Loss in LPD−Capacity due to Mean−Power Constraint 1 0.9 0.8 0.7 C/Co 0.6 0.5 M=32 M=16 M= 4 M= 1 0.4 0.3 0.2 0.1 0 −20 −15 −10 −5 0 5 10 mean−squared power (dB) 15 20 Figure 22. Loss in LPD-capacity due to Pavg constraint (N = M) 46 Comments For no transmit diversity (M = 1) there is no loss in capacity loss increases as more antennas M are deployed by eavesdropper and client loss decreases as SNR ηr increases as ηr decreases to -20 dB loss flattens out. 47 Conclusions 1. For Rician channel T transmits rank-1 component at low SNR 2. Capacity for physical scattering is less optimistic than for Rayleigh 3. High-power interference reduces degrees of freedom (number of useful channel modes) 4. LPD- and LPI- constrained secure channels are different from open channels 5. For uninformed eavesdropper 4th moment constraint constrains LPD 6. LPD-constrained information rate advantage increases with M 48
© Copyright 2024 ExpyDoc